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Introduction

Since the successful fabrication of topological insulators in the last decade [1],
tremendous progress has been made in understanding and optimizing these
non-trivial topological phases of matter. In mathematics, topology is the study
of structures which are classified according to their invariance under continuous
deformations. These mathematical methods can be applied to the quantum
mechanical wave function, revealing that topologically non-trivial states cannot
be adiabatically connected to trivial ones.

The best known and also the first reported non-trivial topological state is the
quantum Hall state, discovered by v. Klitzing et al. [2]. The chiral edge states of
the quantum Hall phase give rise to the quantised Hall conductance observed
in experiments. Thouless et al. [3] showed that this conductance is related to
the topological invariant of the system, called the Chern number or the TKNN
invariant. A lot of effort has been taken to identify these invariant quantities
for other systems and their interplay with symmetries has led to an exhaustive
classification for non-interacting systems [4–7].

Topological insulators are gapped in the normal phase and exhibit gapless
edge modes in the topological phase while the bulk remains gapped. A gapped
spectrum is not exclusive to an insulator. In superconductors the BCS ground
state is separated from the quasiparticle excitation spectrum by the supercon-
ducting gap [8]. In contrast to topological insulators the gapless surface states
are superpositions of particle- and hole-like excitations. This is an analogy to
particle and anti-particle pairs which allows a description in terms of Majorana
fermions. Kitaev [9] showed that the edge modes in a one-dimensional 𝑝-wave
superconductor have Majorana character.

Majorana fermions have been proposed as a platform for quantum compu-
tation [10]. However, intrinsic topological superconductors are rare in nature.
Artificial heterostructures can be designed and fabricated in a lab and various
proposals for proximity induced topological superconductivity exist. The most
promising approach is to deposit magnetic adatoms on the surface of a conven-
tional 𝑠-wave superconductor [11–14]. Magnetic impurities induce low-energy
Shiba bound states in the gap which hybridise and form bands in the limit of
dense impurities. Depending on the orientation of the classical impurity spins
and intrinsic spin--orbit coupling in the superconductor these bands exhibit
non-trivial topology [15].

In this thesis we will design an artificial heterostructure between a conven-
tional 𝑠-wave superconductor with strong spin--orbit coupling and non-collinear
magnets. We evaluate under which conditions Majorana edge states can form
and obtain the topological phase diagram. For two-dimensional interfaces we
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additionally extract the spontaneous surface current resulting from the chiral
edge states. We investigate these properties using both analytical methods as
well as numerical tight-binding calculations.
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Chapter 1

Motivation

It is a common misconception that a quantum computer is intrinsically faster
than its classical counterpart. This assertion holds true only for a very limited
set of algorithms. But the implementation of these highly specialised algorithms
promises a polynomial or even exponential speed-up.

Many of these specialised algorithms are mere proofs-of-concept accompa-
nied by a few real-world use cases, such as Grover’s algorithm [16] for searching
entries in an unsorted dictionary or Shor’s famous algorithm [17] for the prime
factorisation of integers. Alongside this so called digital quantum simulation
where computational operations are realised with logical quantum gates there
exists the concept of analog quantum simultion where a quantum system is
implemented in terms of another one. For instance, the Hubbard model could
be implemented using cold atoms in an optical lattice [18,19].

Quantum computation’s most crucial obstacle is decoherence. A quantum
state is in general entangled with its environment leading to dissipation of
the probability amplitude, which can be modelled by means of non-unitary
processes. This is captured by either a semigroup approach generated by
Lindblad superoperators [20] or a completely non-Hermitian formulation of
quantum mechanics [21]. Loss of information results in errors creeping into the
computational steps. In contrast to classical error correction we now require
some form of quantum error correction.

1.1 Topological Quantum Error Correction

Classical information is stored in the form of magnetic charges (hard disk
drives) or electric charges (flash memory, such as RAM or solid-state drives). To
compensate for the loss of information, due to physical failure of the storage
components, known as data rot, one introduces redundancy by copying the
data somewhere else for a later restore.

For a quantum system this is forbidden by the no-cloning theorem which
states that it is in general not possible to make a copy of an unknown quantum
state. Thus we cannot simply store recovery information for quantum bits. But
errors can be corrected by distributing the information over several qubits. The
Shor code for instance distributes the encoded information onto nine qubits and
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can correct any single qubit error from their entanglement. A variety of active
error correction codes has been devised [22], but it would be much easier if the
integrity of the storage was protected by self-correction since active algorithms
have a very low accuracy threshold [23].

1.2 The Toric Code

The Toric Code Model (TCM) was proposed by Kitaev [24]. The system with
all the subsequently introduced operations is visualised in figure 1.1. We start
from a square lattice with 𝑘× 𝑘 sites and periodic boundary conditions in both
directions. That is to say, the system is embedded in a torus 𝕋2. To each edge
connecting two sites we attach a spin 1/2, such that there are 𝑛 = 2𝑘2 qubits
in total. By concatenating these edges we can form certain structures on the
lattice, two of which are of particular importance; the star 𝑠 and the plaquette
𝑝. The two stabilizer operators

𝐴𝑠 = ∏
𝑗∈star(𝑠)

𝜎𝑥
𝑗 and 𝐵𝑝 = ∏

𝑗∈boundary(𝑝)
𝜎𝑧

𝑗 (1.1)

mutually commute, because a star and a plaquette share either two or no edges.
They both possess eigenvalues ±1. Now we define the protected subspace of
the full Hilbert space of all qubits.

ℒ = {|𝜉⟩ ∈ ℋ | 𝐴𝑠 |𝜉⟩ = |𝜉⟩ , 𝐵𝑝 |𝜉⟩ = |𝜉⟩ ,∀𝑠,𝑝} . (1.2)

That is to say, that ℒ comprises all qubits which are invariant with respect to
all star and plaquette operators. Now the question is, what is the dimension of
this protected subspace—or in other words—how many protected qubits can
we encode in the Toric code?

In a lattice of size 𝑘 × 𝑘 we can identify 𝑘2 different stars and 𝑘2 different
plaquettes, i.e. there are at most 2𝑘2 operators. However, we observe that these
operators have the property

∏
𝑠
𝐴𝑠 = 1 and ∏

𝑝
𝐵𝑝 = 1 (1.3)

which indicates that there are only 𝑚 = 2𝑘2 − 2 independent operators. Us-
ing the general theory of additive quantum codes, Kitaev [24] concludes that
dimℒ = 2𝑛−𝑚 = 22 = 4, i.e. the Toric code model encodes two logical qubits.
This construction is not restricted to a square lattice, but can be extended to
any two-dimensional orientable manifold. The ground state is then 4𝑔-fold
degenerate where 𝑔 is the number of holes in the support of the lattice.

As we have discussed, states in the protected subspace ℒ are invariant with
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𝑠
𝑝

𝐶
𝐶′

𝑧

𝑡

𝑧

𝑥

𝑡′ 𝑥

𝐶𝑧
1

𝐶𝑧
2

𝐶𝑥
2

𝐶𝑥
1

■ Figure 1.1 Illustration of the basic constructs in the Toric code on a lattice with periodic boundary
conditions. The fine lines denote the dual lattice. Star 𝑠 and plaquette 𝑝 terms are dual to each other.
The loops 𝐶 and 𝐶′ as well as the open strings 𝑡 and 𝑡′ with excitations on their ends act trivially on
the protected subspace. Only the non-trivial loops 𝐶𝑧

1,2 and 𝐶𝑥
1,2 wind around the torus.

respect to all star and plaquette operators. An excitation has to violate one of
these constraints then. Excitations can only occur in pairs (due to (1.3)) which
means there is a path connecting them. The two types of excitations can thus
be written like

𝑆𝑧(𝑡) = ∏
𝑗∈𝑡

𝜎𝑧
𝑗 and 𝑆𝑥(𝑡′) = ∏

𝑗∈𝑡′
𝜎𝑥

𝑗 . (1.4)

The excitations are created at the endpoints of the “string” 𝑡 (𝑡′) on the normal
(dual) lattice. Closed strings (loops) do not create any excitations, however they
do not necessarily act trivially on the Toric code. Non-trivial loops cannot be
contracted, which leaves only two possible loops, namely those around the two
directions of the torus, which we denote by 𝒞𝑧

1 and 𝒞𝑧
2 for 𝑧-type excitations

and 𝒞𝑥
1 and 𝒞𝑥

2 for 𝑥-type excitations. Moving an excitation along these path
is equivalent to applying the operator (1.4) for which we define the shorthands
with 𝑖 = 1, 2

𝑍𝑖 = 𝑆𝑧(𝒞𝑧
𝑖 ) and 𝑋𝑖 = 𝑆𝑥(𝒞𝑥

𝑖 ) . (1.5)

These operators facilitate manipulations on the ground state space. It is no
coincidence that the operators are named 𝑍 and 𝑋. They are the equivalent
to 𝜎𝑧 and 𝜎𝑥 for single qubits. We now have the 𝑍 operators for readout and
𝑋 for bit-flip. By moving these excitations around each other (braiding) they
pickup a phase, unlike conventional particles. Particles with this property are
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called Abelian anyons.
The two logical qubits which we have found are robust against local pertur-

bations. In fact, any operator comprising phase (𝜎𝑧) and bit-flip errors (𝜎𝑥),
that does not wind around the torus cannot invalidate the ground state. Errors
which form closed, contractible loops are not considered errors at all. Open
strings have two excitations at the ends which can be detected by measuring all
𝐴𝑠 and 𝐵𝑝 (syndrome measurement) and corrected by finding the characteristic
vector out of the result of this measurement (the syndrome) [24].

Another possibility is to correct errors on a physical level. We introduce the
Toric code Hamiltonian as devised in [24]

𝐻TCM = −∑
𝑠
𝐴𝑠 −∑

𝑝
𝐵𝑝 . (1.6)

Since all 𝐴𝑠 and 𝐵𝑝 commute one can easily diagonalise this Hamiltonian. The
ground state space is equivalent to (1.2) and four-fold degenerate. Excitations
always occur in pairs, which means that the ground state is separated by a gap
Δ ≥ 2 from the excitations spectrum. One expects noise-induced errors to be
removed by some sort of relaxation process.

An implementation of the Toric code using ultracold Rydberg atoms has
been proposed [25]. The Rydberg blockade is exploited to engineer a quantum
simulator. Optical pumping of the control atom into the ground state introduces
cooling.

1.3 Relation to Topological Superconductivity

The Toric code model is the prime example of a system with anyonic excitations.
However, as noted in the end of the previous section, the Toric code is hard to
realise and surrogate models are needed. It was again Kitaev who introduced a
system with similar non-abelian modes, known as Majorana modes. Majorana
fermions are originally a concept of high-energy physics and were hypothesised
by Ettore Majorana in 1937. Fermions of this type are their own antiparticles
and neutrinos are believed to possibly belong to this class.

Majorana modes arise at the edges of one- or two-dimensional topologically
non-trivial superconductors. In one dimension such a model was first proposed
by Kitaev [9]. It is so important for the understanding of topological supercon-
ductivity that we will devote almost the entire next chapter to its properties
and phenomena.
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Summary of Chapter 1

Quantum computers promise tremendous speed-ups over their classical coun-
terparts for certain tasks. However, besides scalability the correction of errors
is a main show-stopper for the implementation of quantum computers today.
One can probably leverage this shortcoming with the help of topologically pro-
tected quantum components. The Toric code is the prime example of such a
system, however, the actual implementation is still lacking. Topological super-
conductors can be used to physically realise topologically protected quantum
computers. Thus they are hot candidates for building blocks in a topological
quantum computer.
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Chapter 2

Topological Superconductivity

This chapter will outline some basics about topological superconductivity. Start-
ing with Kitaev’s Majorana chain we will show how Majorana fermions can arise
in superconductors and sketch how they can be used to achieve error correction.
Following this, we have a short glimpse at the chiral 𝑝-wave superconductor
because it provides a simple showcase for the algorithms needed later.

2.1 Kitaev’s Majorana Chain

Majorana fermions arise at the edges of a one-dimensional superconducting
quantum wire. They have interesting properties that make them good candi-
dates for a robust quantum storage.

2.1.1 The Toy Model

The Majorana chain was introduced by Kitaev [9] to describe a simple but unre-
alistic model which exhibits Majorana fermions. Consider a chain of spinless
fermions with 𝑁 sites and 𝑝-wave superconductivity. It is described by the
following Hamiltonian

𝐻 = ∑
𝑛
(𝑡𝑓†

𝑛𝑓𝑛+1 +Δ𝑓𝑛𝑓𝑛+1 +H.c.) − 𝜇∑
𝑛
(𝑓†

𝑛𝑓𝑛 − 1
2) , (2.1)

where 𝑓𝑛 are the fermionic annihilation operators and 𝑡 is the hopping ampli-
tude, Δ the superconducting gap, and 𝜇 the chemical potential. If the order
parameter of superconductivity was complex as in Δ = |Δ|𝑒𝑖𝜃 one could apply
the simple gauge transformation

𝑓𝑛 → 𝑓𝑛 = 𝑒−𝑖𝜃/2𝑓𝑛 and 𝑓†
𝑛 → 𝑓†

𝑛 = 𝑒𝑖𝜃/2𝑓†
𝑛 (2.2)

to make it real. Henceforth we will assume Δ to be real.
To proceed we introduce self-adjoint creation and annihilation operators

𝛾2𝑛−1 = 𝑓𝑛 +𝑓†
𝑛 and 𝛾2𝑛 = −𝑖(𝑓𝑛 −𝑓†

𝑛) (2.3)
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which we will from now on call Majorana operators. They obey commutation
relations defined by the Clifford algebra.

{𝛾𝑛, 𝛾𝑚′} = 2𝛿𝑛,𝑚 where 𝛾†
𝑛 = 𝛾𝑛 . (2.4)

Now we transform (2.1) using the definitions of (2.3) and obtain

𝐻 = 𝑖
2 ∑

𝑛
[(Δ+ 𝑡)𝛾2𝑛−1𝛾2𝑛+2 + (Δ− 𝑡)𝛾2𝑛𝛾2𝑛+1] − 𝜇 𝑖

2 ∑
𝑛

𝛾2𝑛−1𝛾2𝑛 . (2.5)

For open boundary conditions there is a first and a last site, which we are going
to refer to as left mode 𝛾1 = 𝛾𝐿 and right mode 𝛾2𝑁 = 𝛾𝑅. Let us now examine
two special cases.

▶ The Trivial Case

Let 𝑡 = Δ = 0, then we find

𝐻 = −𝜇 𝑖
2 ∑

𝑛
𝛾2𝑛−1𝛾2𝑛 = −𝜇∑

𝑛
(𝑓†

𝑛𝑓𝑛 − 1
2) . (2.6)

Here Majorana operators from the same physical site 𝑛 are paired together to
form regular fermions which are perfectly localised.

▶ The Topological Case

Let Δ = −𝑡 and 𝜇 = 0. Here things become more peculiar

𝐻 = −𝑖𝑡∑
𝑛

𝛾2𝑛𝛾2𝑛+1 . (2.7)

Now the Majorana operators from two different sites are paired together, leaving
the two outermost Majoranas 𝛾𝐿 and 𝛾𝑅 unpaired. Note that this is indeed a
valid situation, because from a purely algebraic point of view it is irrelevant
which two Majoranas are paired to satisfy the inverse transformation of (2.3).
Based on this observation we introduce new fermionic modes

𝛼𝑛 = 1
2(𝛾2𝑛 + 𝑖𝛾2𝑛+1) and 𝛼†

𝑛 = 1
2(𝛾2𝑛 − 𝑖𝛾2𝑛+1) . (2.8)

Note that the two unpaired Majoranas 𝛾𝐿 and 𝛾𝑅 do not enter. Thus the Hamil-
tonian without the edge modes reads

𝐻 = −2𝑡∑
𝑛
(𝛼†

𝑛𝛼𝑛 − 1
2) . (2.9)

This is formally equivalent to (2.6) but without the two unpaired Majoranas



topological superconduct iv ity 2

15

Dominant chemical potential

𝛾1 𝛾2

⋯

𝑓1 𝑓2 𝑓3 𝑓𝑁−2 𝑓𝑁−1 𝑓𝑁

Dominant hopping and pairing

𝛾𝐿 𝛾𝑅

⋯

■ Figure 2.1 The two possible configurations for pairing up the Majorana fermions. Solid boxes are
physical sites 𝑓𝑛, dots are Majorana fermions 𝛾𝑛. Above is the trivial case where Majoranas are paired
up on the same physical site as indicated by the dashed boxes. Below is the topological case where
Majoranas are paired up from different physical sites, leaving the two Majoranas 𝛾𝐿 and 𝛾𝑅 at the
ends unpaired.

at the edges. Therefore we conclude, that both cases exhibit the same bulk
properties. Indeed, the two cases (2.6) and (2.7) are related by a transformation
𝛾𝑚 → 𝛾𝑚+1. However, this transformation is not unitary and thus the phases
are not equivalent.

As already noted, in the definition of the 𝛼𝑛 operators the two edge modes
do not enter. We can pair up the two edge modes to form an additional operator

𝛼𝑁 = 1
2(𝛾2𝑁 + 𝑖𝛾1) =

1
2(𝛾𝑅 + 𝑖𝛾𝐿) . (2.10)

Here we wrapped around after 2𝑁 and for periodic boundary conditions we
would indeed recover a localised fermionic mode. When we write the edge
Hamiltonian (2.10) in terms of fermionic operators 𝑓𝑛 we find non-local super-
positions of the first and the last site which allows us to detect the Majorana
fermion in a local density of states measurement at the endpoints of the wire.

2.1.2 Numerical Treatment

For open boundary conditions the Hamiltonian (2.1) can in general not be diag-
onalised analytically. Nevertheless we can just write it as a matrix which can
then be readily diagonalised by a computer. To this end we rewrite (2.1) in a
more convenient form using 𝜓𝑛 = (𝑓𝑛, 𝑓†

𝑛)⊤

𝐻 = ∑
𝑛

𝜓†
𝑛 [

𝑡 Δ
−Δ −𝑡

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒯

𝜓𝑛+1 +∑
𝑛

𝜓†
𝑛 [

−𝜇
𝜇
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℳ

𝜓𝑛 − 𝜇𝑁
2 . (2.11)

Because it does not make any difference we neglect the constant energy offset
of −𝜇𝑁/2 and obtain using Ψ = (𝜓1,…,𝜓𝑁)⊤
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■ Figure 2.2 We show the excitation spectrum of a Kitaev chain with 100 sites. The green lines
correspond the the bulk modes, whereas the red lines form the edge modes in the topological regime.
Parameters are 𝑡 = 1, Δ = 1.

𝐻 = Ψ†
⎡⎢⎢⎢⎢
⎣

ℳ 𝒯
𝒯† ℳ 𝒯

𝒯† ⋱ ⋱
⋱ ⋱

⎤⎥⎥⎥⎥
⎦

Ψ . (2.12)

▶ Excitation Spectrum

From the diagonalisation of the matrix (2.12) we can extract the eigenenergies
of the chain for any set of parameters. As we will discuss later, the parameters
𝜇 and 𝑡 drive the topological phase transition. Hence we diagonalise the Hamil-
tonian with open boundary conditions for many values of 𝜇 at fixed 𝑡 and plot
all the energy eigenvalues as a function of 𝜇/𝑡.

The resulting excitation spectrum is shown in figure 2.2. We see that the
bulk gap closes at 𝜇 = ±2𝑡. In the topological regime, highlighted by the grey
background, a state localised at zero energy splits off from the bulk spectrum.
Below we will see that this state is localised at the edges of the wire.

▶ Local density of States

We are interested in the localisation of the Majorana modes. Therefore we
compute the local density of states (LDOS) which is given by

𝜌(𝑥,𝐸) = ∑
𝑖
[|𝑢𝑖(𝑥)|2𝛿(𝐸− 𝐸𝑖) + |𝑣𝑖(𝑥)|2𝛿(𝐸+ 𝐸𝑖)] , (2.13)

with 𝑢𝑖 and 𝑣𝑖 being the coefficients of the particle and hole components of the
computed eigenvectors with energy eigenvalue 𝐸𝑖. On a computer the evaluation
of the above expression is done on a discrete range of 𝐸. As we cannot make
the spacing between sampling points arbitrarily small for obvious reasons, we
have to approximate the 𝛿 distribution, which we do by using a Lorentzian of
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■ Figure 2.3 Local density of states for different values of the chemical potential. The line broadening
was chosen as 𝜂 = 2 ⋅ 10−2. On the left-hand side we show the local density of states in position space
at zero energy. On the right-hand side we show the local density of states at the first site of the chain,
i.e. the left edge in the right picture. With increasing 𝜇 the localisation decreases. Parameters are
𝑡 = 1, Δ = 1.

finite width 𝜂

𝛿(𝑥) = lim
𝜂→0

ℒ𝜂(𝑥) = − lim
𝜂→0

Im 𝜂
𝑥+ 𝑖𝜂 . (2.14)

In figure 2.3 we show the local density of states in position space and in
energy space for three different values of the chemical potential 𝜇. At the ideal
point (𝜇 = 0) the ground state is perfectly localised at the edges of the wire.
For large 𝜇 (e.g. 𝜇 = 𝑡) the edge state protrudes into the bulk (exponential
localisation) and in the vicinity of the gap closing 𝜇 = 1.9 𝑡 (the values where
the gap closing occurs depends on the system size) the state has entered the
bulk spectrum. In the limit of an infinite chain the gap closing shifts to the
exact gap closing at 𝜇 = 2𝑡. The gap closing transition manifests itself in the
LDOS in terms of the vanishing of the zero bias peak which is also the prime
signature observed in the current in tunnelling experiments (STM, interference
junctions) [13,26].

▶ Disorder Stability

The Majorana modes do not enter the Hamiltonian (2.9) at the ideal point 𝜇 = 0.
However, to not violate the charge parity we have to pair them up which results
in a highly delocalised fermionic mode where one half is located at one end of
the wire and the other half at the other end. This non-local character should
make the modes very robust against random disorder.

To study this we introduce the site dependent parameters

𝑡𝑛 = 𝑡(1 + 𝛿𝑡(𝑥𝑛)) , 𝜇𝑛 = 𝜇(1+ 𝛿𝜇(𝑥𝑛)) , Δ𝑛 = Δ(1+ 𝛿Δ(𝑥𝑛)) , (2.15)

where 𝛿𝛼 is a random variable uniformly distributed in the interval Ω𝛼 with
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𝛼 ∈ {𝑡,𝜇,Δ}. As a result, the spectrum becomes noisy in contrast to figure 2.2
where all the lines are smooth. We are interested in how the edge state is af-
fected because according to the above reasoning it should be unaffected by
perturbations if the edges are well separated.

In figure 2.4 we show the lowest positive eigenenergy energy as a function
of chemical potential for static random disorder in the hopping and the super-
conducting gap with Ω𝑡 = ΩΔ = [−0.5, 0.5]. Astonishingly, we find that at the
ideal point the zero-energy edge state is completely unaffected by disorder even
for very short chains. For 𝜇 ≠ 0 the edge state is only stable in longer chains,
since for non-ideal parameters the edge state is not perfectly localised as we
saw in the previous discussion of the LDOS.

2.1.3 Bogoliubov-de-Gennes Transformation

For periodic boundary conditions, the Majorana chain (2.1) can be diagonalised
analytically. To this end we apply a Fourier transform to the fermionic operators
using

𝑓𝑛 = 1
√𝑁 ∑

𝑘
𝑒𝑖𝑘𝑥𝑛𝑓𝑘 and 𝑓†

𝑛 = 1
√𝑁 ∑

𝑘
𝑒−𝑖𝑘𝑥𝑛𝑓†

𝑘 . (2.16)

This transformation is unitary, i.e. the commutation relations of the 𝑓𝑘 are
the same as of the 𝑓𝑛. The 𝑓𝑘 do no longer correspond to particles but to
modes associated with their lattice momentum. These modes 𝑓𝑘 have all the
mathematical structure of single particles, yet they describe collective properties
of all physical particles.

Plugging (2.16) into (2.1) yields

𝐻 = ∑
𝑘
[2𝑡 cos(𝑘)𝑓†

𝑘𝑓𝑘 −𝜇𝑓†
𝑘𝑓𝑘 +Δ𝑒−𝑖𝑘𝑓𝑘𝑓−𝑘 +Δ𝑒𝑖𝑘𝑓†

−𝑘𝑓
†
𝑘] , (2.17)
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■ Figure 2.4 We show the ground state energy for different chain lengths as a function of 𝜇 with
static random disorder in the other parameters where Ω𝑡 = ΩΔ = [−0.5, 0.5]. For sufficient separation
of the edges the ground state is unaffected by perturbations completely. Parameters are 𝑡 = 1, Δ = 1.
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where we have again disregarded the constant offset of −𝜇𝑁/2. The terms
containing the gap function do not look so nice with the complex phase factors,
so we readily remove these by using the substitutions

𝑓𝑘𝑓−𝑘 = 1
2(𝑓𝑘𝑓−𝑘 −𝑓−𝑘𝑓𝑘) and 𝑓†

−𝑘𝑓
†
𝑘 = 1

2(𝑓
†
−𝑘𝑓

†
𝑘 −𝑓†

𝑘𝑓
†
−𝑘) . (2.18)

This provides us with the nice form

𝐻 = ∑
𝑘
[(2𝑡 cos(𝑘) − 𝜇)𝑓†

𝑘𝑓𝑘 − 𝑖Δsin(𝑘)𝑓𝑘𝑓−𝑘 + 𝑖Δsin(𝑘)𝑓†
−𝑘𝑓

†
𝑘] . (2.19)

We proceed to write this Hamiltonian in Nambu grading where Ψ𝑘 = (𝑓𝑘, 𝑓†
−𝑘)⊤

and find the Bogoliubov-de-Gennes (BdG) Hamiltonian

𝐻 = 1
2 ∑

𝑘
Ψ†

𝑘𝐻𝑘Ψ𝑘 = 1
2 ∑

𝑘
Ψ†

𝑘[
2𝑡 cos(𝑘) − 𝜇 2𝑖Δsin(𝑘)
−2𝑖Δsin(𝑘) −(2𝑡 cos(𝑘) − 𝜇)

]Ψ𝑘 . (2.20)

To extract the spectrum it suffices to diagonalise 𝐻𝑘. We find

𝐸(𝑘) = ±√(2𝑡 cos(𝑘) − 𝜇)2 + (2Δsin(𝑘))2 (2.21)

Due to the sine function appearing squared there are only two possibilities for
the spectrum to be gapless, namely 𝑘 = 0 and 𝑘 = ±𝜋 and we find the following
condition for gap closing

±√(±2𝑡 − 𝜇)2 = 0 ⟹ 2|𝑡| = |𝜇| . (2.22)

At these two points we expect the quantum phase transition to occur between
the trivial phase and the topological phase.

2.1.4 The Topological Phase

▶ Winding Number

Before we start, let us quickly take a look at a general 2× 2 matrix of the form

𝑀 = 𝑑 ⋅𝜎 with 𝑑 = ⎛⎜⎜
⎝

𝑟sin𝜃cos𝜙
𝑟sin𝜃sin𝜙

𝑟cos𝜃

⎞⎟⎟
⎠

and 𝜎 = ⎛⎜⎜
⎝

𝜎𝑥

𝜎𝑦

𝜎𝑧

⎞⎟⎟
⎠

. (2.23)

The eigenvalues and eigenvectors of such a matrix are given in general by

𝐸± = ±|𝑑| , |𝑛+⟩ = (
𝑒−𝑖𝜙 cos𝜃/2

sin𝜃/2
) , |𝑛−⟩ = (

−𝑒−𝑖𝜙 sin𝜃/2
cos𝜃/2

) . (2.24)
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The Bogoliubov-de-Gennes Hamiltonian (2.20) can also be written in that
form

𝐻𝑘 = 𝑑(𝑘) ⋅𝜎 with 𝑑(𝑘) = ⎛⎜⎜
⎝

0
−2Δsin(𝑘)

2𝑡 cos(𝑘) − 𝜇

⎞⎟⎟
⎠

. (2.25)

Clearly, the vector 𝑑(𝑘) lives on the cross section through 𝑥 = 0 of the Bloch
ball and can be associated a winding number. Combining (2.23) with (2.25) we
find

𝜙(𝑘) = arctan(
𝑑𝑦
𝑑𝑥

) = {
+𝜋/2 −𝜋 < 𝑘 < 0
−𝜋/2 0 < 𝑘 < 𝜋

,

𝜃(𝑘) = arccos( 𝑑𝑧
|𝑑|) = arccos( 2𝑡 cos(𝑘) − 𝜇

√(2𝑡 cos(𝑘) − 𝜇)2 + (2Δsin(𝑘))2
) .

The winding number is defined as [27]

Γ = 𝑖∮
BZ
⟨𝑛−|∂𝑘|𝑛−⟩ d𝑘 = ∫

𝜋

−𝜋
sin2(𝜃/2) ∂𝑘𝜙 d𝑘 . (2.26)

The derivative of the piecewise defined function 𝜙(𝑘) ∼ Θ(𝑘) is a delta dis-
tribution. This makes the integration very easy and the result can be readily
obtained

Γ = 𝜋
2 ∫

𝜋

−𝜋
[1 − cos(𝜃)]𝛿(𝑘) d𝑘 = 𝜋

2 (1− 2𝑡 − 𝜇
|2𝑡 − 𝜇|) =

⎧⎪⎪
⎨⎪⎪
⎩

0 |𝜇| > 2|𝑡|
𝜋/2 |𝜇| = 2|𝑡|
𝜋 |𝜇| < 2|𝑡|

.

(2.27)

This is very interesting. Comparing the above result with the condition for the
gap closing in (2.22) we see that the winding number changes from zero to non-
zero (or vice versa) when the gap closes. This is exactly the phase transition we
were hoping to find and with the winding number Γ we also found the order
parameter describing it. Here we also see why topological matter is different
from symmetry broken matter. Instead of a local function of position the order
parameter is a global property of the wave function.

▶ The Pfaffian

Kitaev [9] proposed a different but indeed equivalent order parameter based
on the properties of the Hamiltonian itself in the quadratic form (2.5). This
Hamiltonian can be written as
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𝐻 = 𝑖
4 ∑

𝑛,𝑚
𝐴𝑛𝑚𝛾𝑛𝛾𝑚 with 𝐴𝑛𝑚 = −𝐴𝑚𝑛 . (2.28)

The matrix 𝐴 is called skew-symmetric or sometimes also anti-symmetric. Ma-
trices of this kind have a property called the Pfaffian which Kitaev related to a
topological invariant which he termed the Majorana number. It is defined as

Pf[𝐴] = 1
2𝑁𝑁! ∑

𝜎∈𝑆2𝑁

sgn(𝜎)𝐴𝜎(1),𝜎(2)⋯𝐴𝜎(2𝑁−1),𝜎(2𝑁) , (2.29)

where 𝑆2𝑁 is the set of 2𝑁 permutations and sgn(𝜎) is the parity of the permu-
tation 𝜎. Additionally it holds that (Pf[𝐴])2 = det[𝐴].

Calculating the Pfaffian for open boundary conditions is indeed possible
but would involve a numerical evaluation of (2.29). Therefore we will Fourier
transform (2.5) for an easier treatment. The prescription for the Fourier trans-
formation of Majorana operators reads

𝛾2𝑛−1 = 1
√𝑁 ∑

𝑞
𝑒−𝑖𝑞𝑛𝑏𝑞,1 , 𝛾2𝑛 = 1

√𝑁 ∑
𝑞
𝑒−𝑖𝑞𝑛𝑏𝑞,2 . (2.30)

Note that 𝑏†
𝑞 = 𝑏−𝑞. After some simple steps we obtain with 𝑏𝑞 = (𝑏𝑞,1, 𝑏𝑞,2)

𝐻 = 𝑖
4 ∑

𝑞
𝑏†
𝑞[

2𝑡 cos(𝑞) − 𝜇+ 2𝑖Δsin(𝑞)
−2𝑡 cos(𝑞) + 𝜇− 2𝑖Δsin(𝑞)

]𝑏𝑞 .
(2.31)

For a 2 × 2 matrix the Pfaffian is given by

𝐴 = [
𝑎

−𝑎
] , Pf[𝐴] = 𝑎 = 2𝑡 cos(𝑞) − 𝜇+ 2𝑖Δsin(𝑞) . (2.32)

With this result the Majorana number 𝑊 is given by [4]

𝑊 = ∏
𝑎

Pf[𝐴(Λ𝑎)]
√det[𝐴(Λ𝑎)]

= ∏
𝑎

sgn(Pf[𝐴(Λ𝑎)]) = sgn(𝜇2 − 4𝑡2) (2.33)

where Λ𝑎 = 0,𝜋 are the time-reversal invariant momenta. Apparently, 𝑊 can
only take the values ±1 and we find the same condition as for the winding
number

𝑊 = {
+1 |𝜇| > 2|𝑡|
−1 |𝜇| < 2|𝑡|

. (2.34)

For this special case the Majorana number 𝑊 and the winding number Γ yield
the same result for the classification of the topological phase. The winding
number is ab initio an arbitrary integer, i.e. ℤ, whereas the Majorana number
can only takes two values, i.e. ℤ2. Furthermore, the winding number belongs to
the symmetry class BDI (real Δ) whereas the Majorana number belong to class D
(complex Δ). For class D it was proven rigorously [28] that the winding number
and the Majorana number are equivalent. To conclude the discussion we show
a topological phase diagram of the Kitaev chain in figure 2.5.
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■ Figure 2.5 Topological phase diagram for the Kitaev chain. We plotted the topological invariant
over the two parameters of the model. It is easy to see that at the ideal point (𝜇 = 0) the chain is in
the topological phase, regardless of the hopping amplitude.

Unfortunately, this is not the whole story. It turns out very quickly that this
classification of topological phases depends on the system under consideration.
That is to say, not every Hamiltonian can be classified using the winding number
or the Majorana number as shown above. Huge effort has been invested in the
exhaustive classification of topological systems and a periodic table has been
constructed categorising topological insulators and superconductors by their
symmetries [4–7].

▶ Classification by the Ten-Fold Way

It is a nice exercise to classify the Kitaev chain according to the periodic table [4–
7]. Therefore we need to study whether the BdG Hamiltonian (2.20) is invariant
under certain symmetries, namely time-reversal 𝒯, particle-hole 𝒞, and chiral
symmetry 𝒮 which is a combination of the two former ones. They are formally
defined as

𝒯 : 𝑈†
𝑇𝐻∗𝑈𝑇 = +𝐻

𝒞 : 𝑈†
𝐶𝐻𝑇𝑈𝐶 = −𝐻

𝒮 : 𝑈†
𝑆𝐻𝑈𝑆 = −𝐻 , 𝑈𝑆 = 𝑈∗

𝐶𝑈∗
𝑇

Note that time-reversal and particle-hole are both anti-unitary.
In the Hilbert space of the Kitaev model the representations of the operators

𝑈𝑇 and 𝑈𝐶 are given by 𝑈𝑇 = 𝜎0 and 𝑈𝐶 = 𝜎𝑥. For the BdG Hamiltonian (2.20)
with complex order parameter Δ ∈ ℂ this means

𝒯 : 𝜎0𝐻∗(−𝑘)𝜎0 ≠ +𝐻(𝑘)
𝒞 : 𝜎𝑥𝐻𝑇(−𝑘)𝜎𝑥 = −𝐻(𝑘)
𝒮 : 𝜎𝑥𝐻(𝑘)𝜎𝑥 ≠ −𝐻(𝑘)
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From this we infer that the Hamiltonian only fulfils the particle-hole symmetry.
We can now proceed to look this up in the periodic table of topological insulators
and superconductors in the column for spatial dimension 𝑑 = 1 and find that
the Kitaev chain belongs to class D which means that the topological invariant
has ℤ2 character. Simply speaking the invariant can take two possible values
indicating trivial or topological behaviour. This perfectly coincides with what
we found for the winding number and the Majorana number.

2.1.5 Quantum Error Correction

We have promised to show how quantum error correction in the Kitaev model
is achieved and here we will sketch the fundamentals to again bring the ab-
stract calculations of the previous paragraphs into a greater picture. The exact
algorithm is discussed in detail in [29].

Recall the Kitaev model at the ideal point (2.7), i.e. 𝑡 = −Δ and 𝜇 = 0, which
we will henceforth refer to as 𝐻̂.

𝐻̂ = −𝑖𝑡∑
𝑛

𝛾2𝑛𝛾2𝑛+1 .

In this form the two outermost Majoranas 𝛾1 and 𝛾2𝑁 remained unpaired and
in particular—as these operators do not enter the Hamiltonian—they commute
with 𝐻̂. By combining them we can introduce a boundary mode 𝑏 with occupa-
tion number operator 𝑛𝑏

𝑏 = 1
2(𝛾1 + 𝑖𝛾2𝑁) with 𝑛𝑏 = 𝑏†𝑏 . (2.35)

Because the boundary modes commute with 𝐻̂ they are located perfectly at zero
energy. The boundary mode is a fermionic mode, i.e. it has an occupation num-
ber 𝑛𝑏 = 0,1 but cannot be used as a qubit directly because the corresponding
occupations |0⟩ and |1⟩ have different fermionic parity. One has to entangle the
two modes with modes of the same parity from another system, e.g. a second
Kitaev chain. Then we can encode a qubit into the state

|𝑔⟩ = 𝛼 |0⟩1 ⊗ |0⟩2 +𝛽|1⟩1 ⊗ |1⟩2 . (2.36)

If we have encoded information in the qubit |𝑔⟩ we probably want to leave it
there for some time and get coffee. While we enjoy our hot beverage the qubit is
not idle and proceeds its time evolution according to the Schrödinger equation
and after time 𝑡 it has changed to |𝑔(𝑡)⟩ = 𝑒𝑖𝐻𝑡 |𝑔⟩ where 𝐻 is an unknown
Hamiltonian which possibly introduces some errors. How can we recover the
initially encoded state |𝑔⟩?

Before we begin, we will elucidate which kinds of errors this code is capable
of correcting. Define the stabilizer operators 𝑆𝑛 and elementary errors 𝐸𝑛
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𝑆𝑛 = −𝑖𝛾2𝑛𝛾2𝑛+1 such that 𝐻̂ = 𝑡∑
𝑛

𝑆𝑛 ,

𝐸𝑛 = −𝑖𝛾2𝑛−1𝛾2𝑛 .

The unitary time evolution 𝑒𝑖𝐻𝑡 can be decomposed into a superposition of
errors 𝐸 = 𝛾𝑛1⋯𝛾𝑛2𝑘 .

To correct an error, it has to be found first, which is done by a syndrome
measurement 𝑄𝑠. As mentioned earlier, a syndrome measurement is an eigen-
value measurement on all stabilizers which does not collapse the encoded qubit.
Let 𝑠 be the set of all measurement outcomes, then one can derive a suitable
correction operator 𝐶(𝑠). There are several conditions to be met for the cor-
rection. First the corrected state must be part of the ground state space of 𝐻̂.
Second, only errors of small weight are captured, i.e. the error rate has to be
small or the evolution time short. After these two operations we recover

𝐶(𝑠)𝑄𝑠 |𝑔(𝑡)⟩ ∼ (𝑎𝑠𝐼 + 𝑏𝑠𝑃) |𝑔⟩ , (2.37)

with the unity operator 𝐼, the parity operator 𝑃, and some amplitudes 𝑎𝑠, 𝑏𝑠 ∈ ℂ.
In [29] the authors also derive an expression for the fidelity of the storage for a
stored bit |𝑔⟩ after some time 𝑡.

Before we conclude, a note on the unknown Hamiltonian 𝐻. For the above
error correction algorithm to be successful it has to be well-behaved in the
sense that it must not be non-Hermitian nor must it violate the fermionic parity
(bit-flip errors of the encoded qubit).

Based on the discussions in [29] we briefly laid out how to encode a qubit in
the boundary mode of a Kitaev chain and how potential errors can in principle
be corrected. The fact that the topologically protected boundary modes are
decoupled from the Hamiltonian (2.7) makes them robust against random local
disorder.

2.1.6 Summary and Experimental Realisation

When the Majorana fermion was postulated it was envisioned as an elementary
particle. A promising candidate for such a particle is the neutrino. Unfortu-
nately, neutrinos interact only very weakly with other forms of matter and it
has not yet been possible to verify the self-conjugateness of the neutrino.

Supersymmertic extensions to the Standard Model of elementary particles,
also propose Majorana fermions as supersymmetric partners of the well-known
gauge bosons. However, realisations are even more difficult to achieve here.

Kitaev [9] showed that a simple model involving superconductivity can host
fermionic modes with the same properties as Majorana fermions. The modes
are robust against disorder by topological protection and may thus provide a
platform for quantum storage.
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In 2012 Mourik et al. [26] reported for the first time that they had observed
signatures of Majorana modes in semiconductor-superconductor heterostruc-
tures. The researchers found the electrical conductance to be peaked at zero
voltage which corresponds to the zero bias peak in the local density of states
in figure 2.3. Many other reports of findings of the same kind followed, for
an overview see [30]. No experiments actually probing the Majorana character
of these modes, i.e. self-conjugation or non-Abelian statistics, have been per-
formed yet. It is a topic of ongoing research to realise wire networks of Kitaev
chains (or equivalent systems) to perform the braiding.

2.2 Chiral 𝑝-wave Superconductor

Kitaev’s Majorana chain is a one-dimensional model, therefore experimental
realisations are constrained to nanowires and other one-dimensional structures
which are hard to fabricate in the lab. It much easier to produce two-dimensional
thin films, e.g. using evaporation techniques. The chiral 𝑝-wave superconductor
is such a model system. Furthermore, it will serve as a playground for many
of the numerical algorithms presented later because here we can compare the
computations to known analytical results.

2.2.1 Basic Properties

The Kitaev model can be straightforwardly extended to two dimensions. Now
the pairing is no longer solely 𝑝-wave but is extended to 𝑝𝑥 + 𝑖𝑝𝑦 or for short
𝑝+ 𝑖𝑝. The Hamiltonian simply reads

𝐻 = ∑
𝑛

𝑡(𝑓†
𝑛𝑓𝑛+𝑥 +𝑓†

𝑛+𝑥𝑓𝑛) + 𝑡(𝑓†
𝑛𝑓𝑛+𝑦 +𝑓†

𝑛+𝑦𝑓𝑛) − 𝜇𝑓†
𝑛𝑓𝑛

+ (Δ𝑓†
𝑛+𝑥𝑓†

𝑛 +Δ∗𝑓𝑛𝑓𝑛+𝑥) + (𝑖Δ𝑓†
𝑛+𝑦𝑓†

𝑛 − 𝑖Δ∗𝑓𝑛𝑓𝑛+𝑦) , (2.38)

where 𝑥 and 𝑦 are shorthands for a shift by the lattice unit vector in the
corresponding direction.

In the following discussion we will not be so rigorous in the derivations as
for the Kitaev chain, but will either point out where to find the precise steps
or refer back to the previous section, since many of the methods simply stay
the same. If the reader comes across these pages to learn about topological
superconductivity it is instructive to perform all the intermediate steps oneself
to build up some intuition. It also helps to better understand the later chapters.

We will start by transforming the Hamiltonian (2.38) to momentum space us-
ing the prescription (2.16) to obtain a BdG Hamiltonian as shown in section 2.1.3.
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Using Ψ𝑘 = (𝑓𝑘, 𝑓†
−𝑘)⊤ we find

𝐻 = 1
2 ∑

𝑘
Ψ†

𝑘[
𝜉(𝑘) 2𝑖Δ(sin𝑘𝑥 + 𝑖sin𝑘𝑦)

−2𝑖Δ∗(sin𝑘𝑥 − 𝑖sin𝑘𝑦) −𝜉(𝑘)
]Ψ𝑘 , (2.39)

with the abbreviation 𝜉(𝑘) = 2𝑡(cos𝑘𝑥 + cos𝑘𝑦) − 𝜇. Just like for the Kitaev
model we apply the gauge transformation (2.2) to get rid of the complex phase
of the superconducting gap Δ → |Δ|𝑒𝑖𝜃. Now we can write the Hamiltonian in
terms of the Pauli matrices

𝐻𝑘 = 𝜉(𝑘)𝜎𝑧 − 2|Δ| sin(𝑘𝑥)𝜎𝑦 − 2|Δ| sin(𝑘𝑦)𝜎𝑥 . (2.40)

We have again recovered the form involving the 𝑑 vector which determines the
winding number

𝐻𝑘 = 𝑑(𝑘) ⋅𝜎 with 𝑑(𝑘) = ⎛⎜⎜
⎝

−2|Δ| sin(𝑘𝑦)
−2|Δ| sin(𝑘𝑥)

𝜉(𝑘)

⎞⎟⎟
⎠

. (2.41)

As is already known from (2.25) the energy eigenvalues of such a matrix are given
by 𝐸± = ±|𝑑(𝑘)|. We have thus extracted the excitation spectrum with minimal
effort. To change between a trivial and a topological regime it is necessary that
a gap closing takes place, which is the case for four distinct points (𝑘𝑥, 𝑘𝑦, 𝜇).
The first critical point occurs at (𝜋,𝜋,−4𝑡). The second critical point is actually
paired with the third one as they close the gap for same value of 𝜇 but at two
different points in the Brillouin zone (𝜋, 0, 0) and (0,𝜋, 0). The last critical
point is at (0, 0, 4𝑡). That is to say, we have four distinct phases namely for
𝜇 < −4𝑡, −4𝑡 < 𝜇 < 0, 0 < 𝜇 < 4𝑡, and 4𝑡 < 𝜇, the first and the last one of
which are trivial. The two others are topological phases with opposite chirality
as defined by the spectral Chern number [31]

𝒞 = 1
8𝜋 ∫

BZ
𝑑 ⋅ (∂𝑘𝑥𝑑× ∂𝑘𝑥𝑑)d2𝑘 , (2.42)

with the unit vector 𝑑 = 𝑑/|𝑑|. This is akin to the winding number in sec-
tion 2.1.4. In the trivial phase with |𝜇| > 4|𝑡| the vector 𝑑 does not cover the
whole Bloch sphere contrary to the topological phases with |𝜇| < 4|𝑡|. Unfortu-
nately, there exists no easy analytical expression for the winding number 𝒞. We
will evaluate it seminumerically using a Gauß quadrature for the integration to
compare it to the numerical algorithms for the Chern number, see appendix A.1.

2.2.2 Vortices and Majorana Fermions

In section 2.1.3 we have claimed that with the gap closing there is a change
between trivial and topological phase taking place. This is only true when the
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two regions cannot be smoothly deformed into each other by, say, avoiding
the gap closing by taking another path. To elucidate what is happening at the
transition, consider an interface between the two phases at the point 𝜇 = 4𝑡.
The domain wall between the two phases is chosen along the 𝑘𝑦-direction
whereas 𝑘𝑥 points across the interface. The low energy physics takes place at
(𝑘𝑥, 𝑘𝑦) = (0, 0), see above, so we can expand the lattice Hamiltonian around
this point. For convenience we shift the chemical potential 𝜇 → 𝜇̄ − 4𝑡

𝐻𝑘 = 1
2[

−𝜇̄ 2𝑖Δ(𝑘𝑥 + 𝑖𝑘𝑦)
−2𝑖Δ∗(𝑘†

𝑥 − 𝑖𝑘†
𝑦) 𝜇̄

] , (2.43)

where 𝑘𝑥 and 𝑘𝑦 are the momentum operators in canonical quantization. From
this we can derive the BdG equations for a spinor 𝜓 = (𝑢,𝑣)⊤. To this end we
replace the operators 𝑘𝑥 and 𝑘𝑦 by their position representation and obtain

𝑖d𝑢d𝑡 = −𝜇̄𝑢+ 2Δ( ∂
∂𝑥 + 𝑖 ∂

∂𝑦)𝑣 , (2.44)

𝑖d𝑣d𝑡 = 𝜇̄𝑣 + 2Δ∗( ∂
∂𝑥 − 𝑖 ∂

∂𝑦)𝑢 . (2.45)

This is compatible with 𝑢 = 𝑣∗, indicating that the quasiparticles are their
own antiparticles [32]. Because the interface postulated before is translationally
invariant along one direction, 𝑘𝑦 is still a good quantum number and can be
plugged in for the operator

𝐸𝑢 = −𝜇̄𝑢+ 2Δ( ∂
∂𝑥 − 𝑘𝑦)𝑣 , (2.46)

𝐸𝑣 = −2Δ( ∂
∂𝑥 + 𝑘𝑦)𝑢+ 𝜇̄𝑣 . (2.47)

The chemical potential 𝜇̄ is chosen such that 𝜇̄ > 0 for 𝑥 < 0 and 𝜇̄ < 0 for
𝑥 > 0. Following after [32] we choose an ansatz for interface bound states

𝑢(𝑥) ∝ exp(− 1
2Δ ∫

𝑥

0
𝜇(𝑥′)d𝑥′) , (2.48)

where any phase factors have to be chosen such that 𝑢 = 𝑣∗ is ensured. Given
that Δ is real, we find 𝐸 = −2Δ𝑘𝑦, i.e. there is a single bound state localised at
the interface which goes to zero energy at 𝑘𝑦 = 0.

We thus have found a Majorana bound state in the chiral 𝑝-wave supercon-
ductor at a domain wall between the trivial and the topological phase. Such a
domain wall can be thought of as a one-dimensional cut through the system and
can essentially be identified with a Kitaev chain. However, it was not initially
clear that the Majorana state which can be hosted there is actually trapped.

The gap function of the chiral 𝑝-wave superconductor is momentum depen-
dent. There are momenta for which the gap vanishes, i.e. the superconducting
gap has nodes, which does not necessarily coincide with the bulk gap closing. At
these nodes point sized domain walls form, so called vortex cores. We assume
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that there exists a state at zero energy 𝐸 = 0 at the vortex core. We put the
vortex core to the origin of the coordinate system such that we can write the
BdG equations in polar coordinates

2𝑖Δ𝑒𝑖𝜃( ∂
∂𝑟 + 𝑖

𝑟
∂
∂𝜃)𝑣 = 𝜇̄𝑢 , (2.49)

2𝑖Δ𝑒−𝑖𝜃( ∂
∂𝑟 − 𝑖

𝑟
∂
∂𝜃)𝑢 = −𝜇̄𝑣 , (2.50)

with the ansatz from [32] where 𝑓(𝑟) is a real function

𝑢(𝑟,𝜃) = 1
√𝑖𝑟𝑒−𝑖𝜃

𝑓(𝑟) , 𝑣(𝑟,𝜃) = 1
√−𝑖𝑟𝑒𝑖𝜃

𝑓(𝑟) (2.51)

the two BdG equations reduce to a single equation for 𝑓(𝑟), whose solution
reads

𝑓(𝑟) ∝ exp(− 1
2Δ ∫

𝑟

0
𝜇(𝑟′)d𝑟′) . (2.52)

This shows that Majorana bound states are pinned in the vortices of a (𝑝 +
𝑖𝑝)-wave superconductor. These vortices can carry magnetic flux and are not
necessarily pinned in location. This mobility leads to peculiar properties dis-
cussed below.

2.2.3 Non-Abelian Braiding Statistics

We have seen that there exist Majorana bound states in the vortices of a su-
perconductor. Now we will examine what happens when we interchange these
states, i.e. braid them [33]. Let 𝛾(𝑛)

0 be the Majorana operator for the 𝑛-th vor-
tex. Before we continue let us quickly discuss what happens when a particle
moves around a vortex in a supercondutcor. A vortex carries the magnetic
flux Φ0 = ℎ𝑐/2𝑒 and a particle moving around it picks up the corresponding
Aharanov-Bohm phase 𝑒−𝑖𝑒Φ0 = −1. That is to say, after having encircled a
vortex the phase of the particle has switched its sign.

For periodic boundary conditions there cannot be only a single vortex be-
cause this would violate the overall flux conservation in case a magnetic flux is
associated to it. Just like the Majorana fermions in the Kitaev chain they need
to be paired up, e.g. according to (2.3). Here we define for two Majorana bound
states 𝛾(1)

0 and 𝛾(2)
0

𝛾† = 1
√2

(𝛾(1)
0 + 𝑖𝛾(2)

0 ) and 𝛾 = 1
√2

(𝛾(1)
0 − 𝑖𝛾(2)

0 ) . (2.53)

Consider a pair of vortices with Majorana bound states 𝛾(1)
0 and 𝛾(2)

0 . Let a
third vortex 𝛾(3)

0 enter from infinity, encircle 𝛾(2)
0 and disappear again into the

void. This vortex obviously has to have a partner but we consider this to stay
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at infinity. The process of encircling is equivalent to exchanging vortices (1)
and (2) twice [33]. If the Majorana bound states 𝛾(1)

0 and 𝛾(2)
0 were conventional

fermions (or bosons) their final state after this process should be the same as
the initial state before.

Consider an initial state |𝑖⟩ which is annihilated by the initial vortex config-
uration 𝛾 |𝑖⟩ = 0. After encircling vortex (2) by vortex (3) both of them have
switched signs. By this we also change the operator 𝛾 from above by

𝛾 = 1
√2

(𝛾(1)
0 − 𝑖𝛾(2)

0 ) → 𝛾 = 1
√2

(𝛾(1)
0 + 𝑖𝛾(2)

0 ) . (2.54)

This in turn means that the final state |𝑓⟩ is annihilated by 𝛾† |𝑓⟩ = 0 and is
thus orthogonal to the initial state ⟨𝑖|𝑓⟩ = 0. Such an exchange of two states
can be described by a matrix (𝜎𝑥 for a two level system).

Statistics which are described by a matrix are called non-Abelian statistics
and particles obeying these are called non-Abelian anyons. This would allow to
implement quantum gates and the process described above indeed corresponds
to a NOT gate for qubits.

2.2.4 Chiral Edge States and Spontaneous Current

Earlier we found that there are bound states at interfaces in the 𝑝 + 𝑖𝑝-wave
superconductor with a dispersion proportional to the edge momentum 𝐸 =
−2Δ𝑘𝑦. Obviously, the dispersion is not periodic which means that it will never
reverse sign. That is to say, the bound state will travel along the edge in a single
direction. This is the reason why the state is called chiral.

We can visualise this edge state in a calculation similar to the local density
of states. We introduce the surface density of states (SDOS)

𝜌𝑙(𝑘edge, 𝐸) = ∑
𝑚,𝛼

|𝜙𝑚
𝛼 (𝑙, 𝑘edge)|2𝛿(𝐸−𝐸𝑚) ≈ − Im ∑

𝑚,𝛼

|𝜙𝑚
𝛼 (𝑙, 𝑘edge)|2

𝐸− 𝐸𝑚 + 𝑖𝜂 , (2.55)

where 𝑙 stands for a layer parallel to the edge/interface, 𝑘edge for the momentum
along the edge and 𝑚 runs over all eigenstates. The 𝜙𝑚

𝛼 are the coefficients of
the components of the resulting eigenvectors with energy eigenvalue 𝐸𝑚, where
the index 𝛼 denotes the degree of freedom (particle and hole for the chiral
𝑝-wave superconductor). Similar to the local density of states the 𝛿 distribution
can be approximated by a Gaussian of finite width 𝜂.

There are two possible methods to calculate the SDOS. Either we diagonalise
the real space Hamiltonian and Fourier transform the eigenvectors or we com-
pute the spectrum for a Hamiltonian which is periodic along the edge direction.
Using the second method it is much easier to extract the SDOS for 𝑙 = 0 which
we show in figure 2.6. The points are scaled and colour coded according to their
spectral weight. There are two states leaping into the gap from the bulk (barely
visible) which are not connected. This is the overlap from the other edge at
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■ Figure 2.6 Surface density of states in the chiral 𝑝-wave superconductor. The chiral state with
Chern number 𝒞 = +1 crosses through the gap and has linear dispersion around 𝑘𝑥 = 0 as predicted.
The points are scaled and coloured according to their spectral weight. Parameters are 201×10 sites,
𝑙 = 0, 𝑡 = 1, 𝜇 = 2, Δ = 1.

𝑙 = 𝑁𝑦.
According to Mahan [34] equation (1.202), the current density is defined

as the time-derivative of the polarisation operator, which can be written as a
commutator by Heisenberg’s equation of motion

𝑗 = ∂
∂𝑡𝑃 = 𝑖[𝐻,𝑃] , (2.56)

where the polarisation operator is given by

𝑃 = ∑
𝑛

𝑟𝑛𝑛𝑛 = ∑
𝑗,𝜎

𝑟𝑗𝑐†
𝑗,𝜎𝑐𝑗,𝜎 . (2.57)

We calculate the current for (2.38). Carrying out the commutator is easy but
tedious. We only present the result, split by vector components. Obviously, in
a two-dimensional system there are only contributions in 𝑥- and 𝑦-direction.

𝑗𝑥 = 𝑖𝑡 ∑
𝑛,𝜎

(𝑓†
𝑛,𝜎𝑓𝑛+𝑥,𝜎 −𝑓†

𝑛+𝑥,𝜎𝑓𝑛,𝜎) , (2.58)

𝑗𝑦 = 𝑖𝑡 ∑
𝑛,𝜎

(𝑓†
𝑛,𝜎𝑓𝑛+𝑦,𝜎 −𝑓†

𝑛+𝑦,𝜎𝑓𝑛,𝜎) . (2.59)

For the surface density of states we chose the edge to be along the 𝑥-direc-
tion. To this end we also present the current resolved by the edge momentum.
Therefore we Fourier transform the expression for 𝑗𝑥 only in 𝑥-direction.

𝑗𝑥 = −2𝑡 ∑
𝑘𝑥,𝑗,𝜎

sin𝑘𝑥 𝑓†
𝑘𝑥,𝑗,𝜎𝑓𝑘𝑥,𝑗,𝜎 . (2.60)

In figure 2.7 we plot the real space current and the 𝑘-space current. The
real space current was computed for a system with 20×10 and open boundary
conditions. The vectors indicate that the current is going around the system.
The magnitude is colour coded where red means stronger. The 𝑘-space current
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■ Figure 2.7 We show the expectation value of the current operator. On the left-hand side we plot
the current density in real space with vectors for 20×10 sites with open boundary conditions. One
can clearly see the current going around the system. On the right-hand side we plot the symmetrised
current of the layer 𝑙 = 0 for 101×10 sites with periodic boundary conditions along the edge. Parameters
are 𝑡 = 1, 𝜇 = 2, Δ = 1.

was computed for a system with 101×10 sites and periodic boundary conditions
in 𝑥-direction. The signal in this edge momentum resolved current is mainly
dominated by the asymmetric sine function. To extract the signal emergent
form the chiral edge state we symmetrise it using 𝑗𝑥(𝑘𝑥) + 𝑗𝑥(−𝑘) such that
the asymmetric part drops out.

2.3 Engineering Topological Superconductivity

The models we have introduced so far have the drawback that they are spinless.
If we would promote these models to a spinful description they would be pairing
up electrons of the same spin. There exist unconventional superconductors
with such a pairing mechanism but they are very rare in nature and have not
yet been observed experimentally, though candidate materials such as Sr2RuO4
have been identified [35].

Therefore it is of great interest to engineer an effective 𝑝-wave pairing in
conventional superconductors. To this end the degeneracy of the two spin
directions has to be lifted which is possible by applying a magnetic field. Unfor-
tunately, this breaks the pairing process in the first place because electrons of
opposite spins at the Fermi surface have to be paired up which is no longer pos-
sible if their Fermi surfaces are separated by an energy splitting. This problem
can be circumvented by not considering an external magnetic field but magnetic
adatoms whose magnetisation varies locally [11, 12, 14, 36]. If this variation
is chosen in a certain way it is possible for the system to stabilise Majorana
edge states. The same effect can also be achieved using magnetic adatoms with
ferromagnetic ordering and spin--orbit coupling in the superconductor [15,37,
38].
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Summary of Chapter 2

Kitaev’s Majorana chain [9] provides a simple toy model for a topological super-
conductor in one dimension. It is described by a simple tight-binding Hamilton-
ian (2.1) with the three parameters hopping, pairing, and chemical potential. By
transforming it to a representation involving Majorana operators (2.3) one can
show that for certain choices of the parameters unpaired Majorana fermions
arise at the end of the system.

After Fourier transforming using (2.16), the Hamiltonian can be written in
Bogoliubov-de-Gennes form (2.20) from which we can extract the bulk excitation
spectrum and the topological invariant which is in this case given by a winding
number (2.26). Alternatively, one could also extract the Majorana number (2.33)
which is a property of the Hamiltonian itself rather than the wave function and
is given in terms of the Pfaffian of the Hamiltonian in the Majorana basis.

Majorana fermions cannot really exist unpaired because they only correspond
to half a physical fermion. In the case of the two unpaired Majorana fermions
they have to be paired up over the whole system which gives them a non-local
nature. This non-locality in turn makes them very robust to local perturbations
and good candidates for building blocks in a quantum storage device.

The chiral 𝑝-wave superconductor can be seen as a Kitaev model promoted to
two dimensions (2.38). From the Bogoliubov-de-Gennes form of the Hamiltonian
a topological invariant similar to the winding number can be extracted (A.1).
A magnetic field pierces the superconductor leading to vortices. The vortex
core traps a single Majorana zero mode and braiding two vortices reveals their
non-Abelian statistics.
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Chapter 3

Magnetic Adatoms

Intrinsic topological superconductors are rare in nature, because they require
unconventional pairing mechanisms such as (𝑝𝑥+𝑖𝑝𝑦)-wave. Kitaev [9] showed
that fermionic Majorana modes can be found in one-dimensional 𝑝-wave super-
conducting chains.

Instead of relying on intrinsic topological superconductivity of materials
it has been proposed to induce an effective 𝑝-wave pairing state by coupling
a conventional 𝑠-wave superconductor to a chain of magnetic adatoms [11,
12, 14, 36]. The existence of a topological phase with Majorana edge modes
depends on the alignment of the spins of the magnetic adatoms. An alternative
approach is to exploit spin--orbit coupling in superconductors in conjunction
with ferromagnetic adatoms [15], which has been realised experimentally [13]
with great success.

3.1 Shiba States

Impurities in superconductors give rise to bound states in the gap [39]. These
sub-gap states were first introduced by Yu [40], Shiba [41], and Rusinov [42]
and are thus usually called Yu-Shiba-Rusinov states or only Shiba states.

Consider magnetic impurities deposited on the surface of a superconductor.
The impurities are given by classical spins which couple to the quasiparticle
spin located at the same position via a Zeeman (or Stern-Gerlach) term

𝐻imp = ∫d𝑟 Ψ†
𝛼(𝑟)(𝐵(𝑟) ⋅𝜎𝛼𝛽)Ψ𝛽(𝑟) . (3.1)

In the case of a single impurity at the origin of the coordinate system 𝐵(𝑟) =
𝐵𝛿(𝑟) Shiba originally derived the bound state energy as

𝐸0 = 1− (𝐵𝜋𝑁0/2)2
1 + (𝐵𝜋𝑁0/2)2

Δ , (3.2)

where𝑁0 is the normal state density of states at the Fermi energy. The wavefunc-
tions of the Shiba bound states can be computed from the Bogoliubov-de-Gennes
equations and decay into the bulk. In the case of many impurities with tight
spacing these decaying bound states overlap and form bands. For certain con-
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■ Figure 3.1 We show the spectrum for a single impurity with exchange coupling 𝐵 in a supercon-
ductor with 20×20 sites and periodic boundary conditions. There is a bound state for each of the two
spin directions (coloured in red). The bulk bands are coloured in green. For a critical value 𝐵𝑐 of the
exchange coupling the lines intersect. Parameters are 𝑡 = 1, 𝜇 = 0.5, Δ = 1.

figurations which we will discuss later, this band structure exhibits non-trivial
topology.

To derive the above result analytically is quite hard. The full derivation is
given in the paper by Yu [40]. We can still reproduce the result by performing a
tight-binding calculation on the following Hamiltonian

𝐻 = 𝑡 ∑
𝑛,𝜎

(𝑓†
𝑛,𝜎𝑓𝑛+1,𝜎+H.c.)−𝜇 ∑

𝑛,𝜎
𝑓†

𝑛,𝜎𝑓𝑛,𝜎+Δ∑
𝑛
(𝑓†

𝑛,↑𝑓
†
𝑛,↓+𝑓𝑛,↓𝑓𝑛,↑)+𝐻imp .

(3.3)

The hopping and chemical potential term are already known from the Kitaev
chain but now we have an additional spin degree of freedom. The pairing is now
on-site and pairs up different spin directions. This is known as a conventional
𝑠-wave superconductor.

The original result by Shiba was obtained in periodic boundary conditions
which we also impose on our tight-binding model. We diagonalise the Hamilton-
ian on a 20×20 lattice for different values of 𝐵 with the impurity located at the
centre. The resulting spectrum is shown in figure 3.1. We find two bound states
in the gap, one for each spin direction. For a critical value 𝐵𝑐 of the exchange
coupling the associated lines intersect at zero energy. The band inversion at
this point already indicates topological features. The question is how to pin
the subgap state at zero energy over a larger interval of 𝐵. The first thought of
course is to add more impurities to have more subgap states. Unfortunately,
ferromagnetic impurities suppress superconductivity which is the reason for
the bound state in the first place. This drawback can be remedied by the in-
troduction of either a helical ordering of the attached impurities or spin--orbit
coupling in the superconductor [11–15,36].
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𝑠-wave SC

■ Figure 3.2 Sketch of the system proposed by Nakosai et al. [43]. A two-dimensional structure with
𝑠-wave Cooper pairing interacts with a spin texture, which induces a magnetic interaction.

3.2 Spin Texture

As already pointed out, topological superconductivity can be realised in het-
erostructures with magnetic adatoms of specific alignment. The structure of
this magnetic coupling is imprinted via a spin texture on top of the lattice. The
impurity Hamiltonian is then site dependent [43]

𝐻 = 𝑡 ∑
𝑛,𝜎

(𝑓†
𝑛,𝜎𝑓𝑛+1,𝜎 +H.c.) − 𝜇 ∑

𝑛,𝜎
𝑓†

𝑛,𝜎𝑓𝑛,𝜎 +Δ∑
𝑛
(𝑓†

𝑛,↑𝑓
†
𝑛,↓ +𝑓𝑛,↓𝑓𝑛,↑)

+ ∑
𝑛,𝛼,𝛽

(𝐵𝑛 ⋅𝜎)𝛼𝛽𝑓†
𝑛,𝛼𝑓𝑛,𝛽 . (3.4)

A sketch of a candidate system implementing this Hamiltonian is depicted in
figure 3.2.

Transforming the Hamiltonian (3.4) to 𝑘-space is not feasible for a general
spin configuration, as the spin texture {𝐵𝑛} eludes itself from a straightforward
Fourier transformation. Usually the classical spins are taken to have the same
coupling strength at all sites and are parametrised by spherical coordinates

𝐵𝑛(𝜃,𝜙) = 𝐵(sin𝜃𝑛 cos𝜙𝑛, sin𝜃𝑛 sin𝜙𝑛, cos𝜃𝑛) . (3.5)

Interactions among the impurity spins are induced by exchange processes, such
as the Ruderman-Kittel-Kasuya-Yosida (RKKY) [44–46] interaction or Dzyaloshin-
skii-Moriya interaction [47,48]. It is not a priori clear which kind of ordering of
the adatoms is preferred. It has been observed that ferromagnetic ordering is
favoured in tightly packed chains of adatoms [13]. Other studies [49,50] suggest
that a ferromagnetic order is not stable in the superconducting state and helical
patterns, e.g. a spiral are favoured. We will therefore investigate both in the
following text.
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3.3 Spin--Orbit Coupling in Solid State Physics

Brydon et al. [15] proposed a two-dimensional 𝑠-wave superconductor with
Rashba spin--orbit coupling. The authors showed that it is feasible to realise
a topological state of the subgap band formed by magnetic impurities in the
presence of Rashba spin--orbit coupling. Spin-flip correlations emerging from
the spin--orbit coupling lead to a topological phase for ferromagnetic order of
the magnetic impurities.

The Hamiltonian in [15] is given in the BdG form 𝐻 = ∑𝑘 Ψ
†
𝑘𝐻𝑘Ψ𝑘 where

𝐻𝑘 = 𝜉𝑘𝜏𝑧 ⊗𝜎0 +𝜏𝑧 ⊗ (𝑙𝑘 ⋅𝜎) + Δ𝜏𝑥 ⊗𝜎0 , (3.6)

where the first and the last term describe the bare 𝑠-wave superconductor,
whereas the second term represents the spin--orbit coupling.

The Nambu space is spanned by Ψ𝑘 = (𝑓𝑘,↑, 𝑓𝑘,↓, 𝑓†
−𝑘,↑,−𝑓†

−𝑘,↓) and the
Rashba spin--orbit coupling is parametrised by 𝑙𝑘 = 𝜆(𝑘𝑦𝑒𝑥 −𝑘𝑥𝑒𝑦). To derive
this form of the spin--orbit coupling one has to take into account symmetry
constraints. These are time-reversal symmetry and the crystallographic point
group symmetry of the material. Time-reversal symmetry demands that 𝑙𝑘 is
odd in 𝑘. An element from the crystallographic point group can be either a
proper rotation (det𝑅 = 1) or an improper rotation (det𝑅 = −1). One then has

𝑙𝑘 = det(𝑅)𝑅𝑙𝑅−1𝑘 . (3.7)

A small-momentum expansion (nearest neighbour approximation) for the tetrag-
onal point group 𝒢 = 𝐶4𝑣 then yields [51]

𝑙𝑘 = 𝜆(𝑘𝑦𝑒𝑥 −𝑘𝑥𝑒𝑦) . (3.8)

An extensive table for a myriad of point and line groups and several orders of
expansion is given by Samokhin [51].

To consider a finite system, which is crucial for the existence of an edge
state, we need to transform the spin--orbit coupling to real space. Therefore,
we proceed to multiply out the spin--orbit coupling term in the Nambu space
and are left with

𝐻SOC = 𝑙𝑘 ⋅𝜎 = 2𝜆∑
𝑘
(𝑘𝑦 + 𝑖𝑘𝑥)𝑓†

𝑘,↑𝑓𝑘,↓ +H.c. (3.9)

To be able to Fourier transform this representation to real space we assume
the lattice form of the Rashba-type SOC, i.e. 𝑘𝜇 → sin𝑘𝜇. With this one finds

𝐻SOC = 2𝜆∑
𝑘
(sin𝑘𝑦 + 𝑖sin𝑘𝑥)𝑓†

𝑘,↑𝑓𝑘,↓ + (sin𝑘𝑦 − 𝑖sin𝑘𝑥)𝑓†
𝑘,↓𝑓𝑘,↑ . (3.10)
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The complete process of the Fourier transformation is straightforward. Here,
we only present the result, which reads

𝐻SOC = 𝜆∑
𝑛
[(𝑓†

𝑛−𝑥,↓𝑓𝑛,↑ −𝑓†
𝑛+𝑥,↓𝑓𝑛,↑) + 𝑖(𝑓†

𝑛−𝑦,↓𝑓𝑛,↑ −𝑓†
𝑛+𝑦,↓𝑓𝑛,↑) + H.c.] .

(3.11)

We immediately see that there is an anisotropy present, which is an imaginary
coupling in 𝑦-direction as opposed to a real coupling in 𝑥-direction.

With spin--orbit coupling the Hamiltonian (3.4) becomes

𝐻 = 𝑡 ∑
𝑛,𝜎

(𝑓†
𝑛,𝜎𝑓𝑛+1,𝜎 +H.c.) − 𝜇 ∑

𝑛,𝜎
𝑓†

𝑛,𝜎𝑓𝑛,𝜎 +Δ∑
𝑛
(𝑓†

𝑛,↑𝑓
†
𝑛,↓ +𝑓𝑛,↓𝑓𝑛,↑)

+ 𝜆∑
𝑛
[(𝑓†

𝑛−𝛿𝑥,↓𝑓𝑛,↑ −𝑓†
𝑛+𝛿𝑥,↓𝑓𝑛,↑) + 𝑖(𝑓†

𝑛−𝛿𝑦,↓𝑓𝑛,↑ −𝑓†
𝑛+𝛿𝑦,↓𝑓𝑛,↑) + H.c.]

+ ∑
𝑛,𝛼,𝛽

(𝐵𝑛 ⋅𝜎)𝛼𝛽𝑓†
𝑛,𝛼𝑓𝑛,𝛽 (3.12)

3.4 Topological Phases in a Shiba Chain

We start by summarizing some results given in [12] where a helical magnet
on an 𝑠-wave superconductor is considered. In a next step we show that this
model is unitarily equivalent to a ferromagnet on an 𝑠-wave superconductor
with intrinsic spin--orbit coupling. Last, we extend the model given in [12] by
considering a helical magnet in conjunction with spin--orbit coupling.

3.4.1 Helical Spin Texture

The chain with magnetic impurities is quite similar to the Kitaev chain in the
sense that it also belongs to class D according to the ten-fold way of classification
[4–7]. The host superconductor ensures particle-hole symmetry whereas the
magnetic field from the adatoms breaks time-reversal symmetry. For a one-
dimensional system the topological invariant is given by the Pfaffian of the
Hamiltonian in a Majorana basis. Nadj-Perge et al. [12] evaluated the Pfaffian for
a one-dimensional chain with the magnetic impurities adjusted in a spiral, akin
to figure 3.2. They parametrised the orientation of the magnetic impurities as
in (3.5) and applied a unitary transformation to rotate this orientation locally to
point along the 𝑧-axis. We briefly summarise their results for later comparison.
The Hamiltonian in [12] reads

𝐻 = ∑
𝑛,𝛼

(𝑡𝑓†
𝑛,𝛼𝑓𝑛+1,𝛼 +H.c.) − 𝜇∑

𝑛,𝛼
𝑓†

𝑛,𝛼𝑓𝑛,𝛼 +∑
𝑛
(Δ𝑛𝑓†

𝑛,↑𝑓
†
𝑛,↓ +H.c.)

+ ∑
𝑛,𝛼,𝛽

(𝐵𝑛 ⋅𝜎)𝛼𝛽𝑓†
𝑛,𝛼𝑓𝑛,𝛽 . (3.13)
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The local gap parameter Δ𝑛 is set globally to a constant Δ0. As already men-
tioned, the magnetic impurities are parametrised by

𝐵𝑛 = 𝐵0(sin𝜃𝑛 cos𝜙𝑛, sin𝜃𝑛 sin𝜙𝑛, cos𝜃𝑛)⊤ .

The unitary transformation is constructed from the product of three rotations
in spin space. The common rotation is given by

𝑅𝑛(𝛼) = exp(𝑖𝛼2𝑛 ⋅𝜎) = 𝜎0 cos(
𝛼
2 )+ 𝑖(𝑛 ⋅𝜎) sin(𝛼

2 ) (3.14)

with the axis of rotation 𝑛 and the angle of rotation 𝛼. We then rotate

𝑈𝑛 = 𝑅𝑧(−𝜙𝑛) ⋅ 𝑅𝑦(−𝜃𝑛) ⋅ 𝑅𝑧(𝜙𝑛) = [
cos𝜃𝑛/2 −sin𝜃𝑛/2𝑒−𝑖𝜙𝑛

sin𝜃𝑛/2𝑒𝑖𝜙𝑛 cos𝜃𝑛/2
] .

(3.15)

This transformation is applied to the fermionic operators 𝑓𝑛,𝜎, such that

(
𝑓𝑛,↑

𝑓𝑛,↓
) = 𝑈𝑛(

𝑔𝑛,↑

𝑔𝑛,↓
) , (3.16)

with the new operators 𝑔𝑛,𝜎. Since the transformation is unitary, the commu-
tation relations are not affected and 𝑔𝑛,𝜎 are again fermionic operators. The
transformation does not change the form of the chemical potential and gap
term in (3.13), but the exchange coupling becomes diagonal and the hopping
acquires components mixing the spins

𝐻 = ∑
𝑛,𝛼,𝛽

𝑡Ω𝑛,𝛼,𝛽𝑔†
𝑛,𝛼𝑔𝑛+1,𝛽 + 𝑡∗Ω∗

𝑛,𝛽,𝛼𝑔
†
𝑛+1,𝛼𝑔𝑛,𝛽 +𝐵0𝜎𝑧,𝛼𝛽𝑔†

𝑛,𝛼𝑔𝑛,𝛽

−𝜇∑
𝑛,𝛼

𝑔†
𝑛,𝛼𝑔𝑛,𝛼 +∑

𝑛
Δ0(𝑔†

𝑛,↑𝑔
†
𝑛,↓ +𝑔𝑛,↓𝑔𝑛,↑) , (3.17)

with the matrix Ω𝑛

Ω𝑛 = [
𝛼𝑛 −𝛽∗

𝑛
𝛽𝑛 𝛼∗

𝑛
] , (3.18)

whose elements 𝛼𝑛 and 𝛽𝑛 are given in [12] by

𝛼𝑛 = cos 𝜃𝑛
2 cos 𝜃𝑛+1

2 + sin 𝜃𝑛
2 sin 𝜃𝑛+1

2 𝑒−𝑖(𝜙𝑛−𝜙𝑛+1) , (3.19)

𝛽𝑛 = −sin 𝜃𝑛
2 cos 𝜃𝑛+1

2 𝑒𝑖𝜙𝑛 + cos 𝜃𝑛
2 sin 𝜃𝑛+1

2 𝑒𝑖𝜙𝑛+1 . (3.20)

For a static angle 𝜃 = 𝜃𝑛+1 −𝜃𝑛 between adjacent sites and 𝜙𝑛 = 0 the matrix
elements reduce to 𝛼 = cos𝜃/2 and 𝛽 = sin𝜃/2. Such a spiral is illustrated in
figure 3.3.

However, 𝜃 is initially not constrained and therefore 𝜃 ∈ [0, 2𝜋). It is
important to note that even though we find a topological invariant indicating
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𝜃

■ Figure 3.3 The classical spins are ordered in a helical pattern with periodicity of the full spiral
𝑛𝜃 = 2𝜋, here we have 𝑛 = 3. By unitary transformation this spin texture can be made commensurate
with the lattice.
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■ Figure 3.4 Topological phase diagram from the analytical expression (3.22). Parameters are 𝑡 = 1,
Δ = 1, 𝜃 = 2𝜋/3.

non-trivial behaviour for all 𝜃 the bulk spectrum is not always gapped. We want
to stress again that both conditions have to be met simultaneously to give rise
to topologically protected states in non-interacting systems.

After expressing the above Hamiltonian (3.17) in the Majorana basis and
transforming to 𝑘-space Nadj-Perge et al. [12] find for the Pfaffian

Pf[𝐴(𝑞)] = 𝐵2
0 − [𝜇− 2𝑡𝛼cos(𝑞)]2 − [Δ0 − 2𝑖𝑡𝛽sin(𝑞)]2 (3.21)

and derive the following condition for the topological phase

√Δ2
0 + (|𝜇| + |2𝛼𝑡|)2 > 𝐵0 > √Δ2

0 + (|𝜇| − |2𝛼𝑡|)2 . (3.22)

Finally we show a topological phase diagram illustrating this condition in fig-
ure 3.4.

3.4.2 Ferromagnetic Spin Texture with Spin--Orbit Coupling

We now want to show that the effects of a helical magnet can be related to those
of Rashba-type spin--orbit coupling. We will thus compute the Pfaffian for a
model similar to the one in [12] but with themagnetic impurities in ferromagnetic
ordering (all aligned in the same direction) and an additional spin--orbit coupling
term. The Majorana transformation is given by (2.3)
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𝛾2𝑛−1,𝜎 = 𝑓𝑛,𝜎 +𝑓†
𝑛,𝜎 , 𝛾2𝑛,𝜎 = −𝑖(𝑓𝑛,𝜎 −𝑓†

𝑛,𝜎)

with the properties

𝛾†
𝑛,𝜎 = 𝛾𝑛,𝜎 , {𝛾𝑛,𝜎, 𝛾𝑚,𝜎′} = 2𝛿𝑛,𝑚𝛿𝜎,𝜎′

and vice versa

𝑓𝑛,𝜎 = 1
2(𝛾2𝑛−1,𝜎 + 𝑖𝛾2𝑛,𝜎) , 𝑓†

𝑛,𝜎 = 1
2(𝛾2𝑛−1,𝜎 − 𝑖𝛾2𝑛,𝜎) .

We use these substitution rules to obtain the Majorana representation of (3.13),
which is also given in [12] as

𝐻 = ∑
𝑛,𝜎

𝑖Re(𝑡𝑛)
2 (𝛾2𝑛−1,𝜎𝛾2𝑛+2,𝜎 −𝛾2𝑛,𝜎𝛾2𝑛+1,𝜎)

+ 𝑖 Im(𝑡𝑛)
2 (𝛾2𝑛−1,𝜎𝛾2𝑛+1,𝜎 +𝛾2𝑛,𝜎𝛾2𝑛+2,𝜎) −

𝑖𝜇
2 𝛾2𝑛−1,𝜎𝛾2𝑛,𝜎

+∑
𝑛

𝑖𝐵𝑛,𝑥
2 (𝛾2𝑛−1,↑𝛾2𝑛,↓ −𝛾2𝑛,↑𝛾2𝑛−1,↓) −

𝑖𝐵𝑛,𝑦
2 (𝛾2𝑛−1,↑𝛾2𝑛−1,↓ +𝛾2𝑛,↑𝛾2𝑛,↓)

+
𝑖𝐵𝑛,𝑧
2 (𝛾2𝑛−1,↑𝛾2𝑛,↑ −𝛾2𝑛−1,↓𝛾2𝑛,↓) +

𝑖Δ0
2 (𝛾2𝑛−1,↓𝛾2𝑛,↑ +𝛾2𝑛,↓𝛾2𝑛−1,↑).(3.23)

For simplicity and to compare with the model (3.12) in ferromagnetic order, we
adjust the parameters in the above equation:

𝐵𝑛 → 𝐵 , 𝑡𝑛 → 𝑡′ , 𝑡′ ∈ ℝ .

Furthermore, we add the spin--orbit coupling term (3.11), where we cancel all
the terms containing hopping in 𝑦-direction, since we are looking at a 1D chain.
The Majorana representation reads

𝐻SOC = ∑
𝑛

𝑖𝜆
2 (𝛾2𝑛+2,↓𝛾2𝑛−1,↑ +𝛾2𝑛,↑𝛾2𝑛+1,↓ +𝛾2𝑛−1,↑𝛾2𝑛−2,↓ +𝛾2𝑛−3,↓𝛾2𝑛,↑) .

(3.24)

The full Hamiltonian in Majorana form thus reads

𝐻 = ∑
𝑛,𝜎

𝑖𝑡′
2 (𝛾2𝑛−1,𝜎𝛾2𝑛+2,𝜎 −𝛾2𝑛,𝜎𝛾2𝑛+1,𝜎) −

𝑖𝜇
2 𝛾2𝑛−1,𝜎𝛾2𝑛,𝜎

+∑
𝑛

𝑖𝐵𝑥
2 (𝛾2𝑛−1,↑𝛾2𝑛,↓ −𝛾2𝑛,↑𝛾2𝑛−1,↓) −

𝑖𝐵𝑦
2 (𝛾2𝑛−1,↑𝛾2𝑛−1,↓ +𝛾2𝑛,↑𝛾2𝑛,↓)

+ 𝑖𝐵𝑧
2 (𝛾2𝑛−1,↑𝛾2𝑛,↑ −𝛾2𝑛−1,↓𝛾2𝑛,↓) +

𝑖Δ0
2 (𝛾2𝑛−1,↓𝛾2𝑛,↑ +𝛾2𝑛,↓𝛾2𝑛−1,↑)

+ 𝑖𝜆
2 (𝛾2𝑛+2,↓𝛾2𝑛−1,↑ +𝛾2𝑛,↑𝛾2𝑛+1,↓ +𝛾2𝑛−1,↑𝛾2𝑛−2,↓ +𝛾2𝑛−3,↓𝛾2𝑛,↑) . (3.25)

Now we Fourier transform this result using the prescription
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𝛾2𝑛−1,𝜎 = 1
√𝑁 ∑

𝑞
𝑒−𝑖𝑞𝑛𝑏𝑞,1,𝜎 , 𝛾2𝑛,𝜎 = 1

√𝑁 ∑
𝑞
𝑒−𝑖𝑞𝑛𝑏𝑞,2,𝜎 . (3.26)

Note, that 𝑏†
𝑞 = 𝑏−𝑞. We obtain the form

𝐻 = 𝑖
4 ∑

𝑞
𝑏†
𝑞𝐴(𝑞)𝑏𝑞 , (3.27)

with 𝑏𝑞 = (𝑏𝑞,1,↑, 𝑏𝑞,1,↓, 𝑏𝑞,2,↑, 𝑏𝑞,2,↓)⊤ and the skew-symmetric matrix 𝐴(𝑞). The
non-zero elements of 𝐴(𝑞) are given by

𝐴12 = −𝐵𝑦

𝐴13 = 2𝑡′ cos(𝑞) − 𝜇+ 𝐵𝑧

𝐴14 = 𝐵𝑥 + 2𝑖𝜆sin(𝑞) − Δ0

𝐴23 = Δ0 + 2𝑖𝜆sin(−𝑞) + 𝐵𝑥

𝐴24 = 2𝑡′ cos(𝑞) − 𝜇− 𝐵𝑧

𝐴34 = −𝐵𝑦

(3.28)

The Pfaffian of this 4 × 4-matrix is hence

Pf[𝐴(𝑞)] = |𝐵|2 − [𝜇− 2𝑡′ cos(𝑞)]2 − [Δ0 − 2𝑖𝜆sin(𝑞)]2 . (3.29)

By a direct comparison with (3.21) one finds

𝑡′ = 𝑡cos𝜃/2 , 𝜆 = 𝑡 sin𝜃/2 . (3.30)

The system under consideration belongs to class D according to the periodic
table of topological insulators and superconductors [4–7]. In one spatial dimen-
sion the topological invariant is of ℤ2 character. From (3.29) we can determine
this bulk ℤ2 invariant, which is the Majorana number (as for the Kitaev chain)
and is given by

𝑊 = ∏
𝑎

Pf[𝐴(Λ𝑎)]
√det[𝐴(Λ𝑎)]

= ∏
𝑎

sgn(Pf[𝐴(Λ𝑎)]) = ±1 (3.31)

where sgn(⋅) is the signum function and Λ𝑎 are the time-reversal invariant
momenta, here Λ𝑎 ∈ {0,𝜋}. Working out 𝑊 reads

sgn(Pf[𝐴(0)]) sgn(Pf[𝐴(𝜋)])
= sgn(|𝐵|2 − (𝜇− 2𝑡′)2 −Δ2

0) sgn(|𝐵|2 − (𝜇+ 2𝑡′)2 −Δ2
0) , (3.32)

which has to be equal to −1. This is indeed fulfilled for

√Δ2
0 + (|𝜇| + |2𝑡′|)2 > |𝐵| > √Δ2

0 + (|𝜇| − |2𝑡′|)2 . (3.33)

This is in essence the same condition as (3.22) and again implies |𝑡′| = |𝛼𝑡|.
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3.4.3 Helical Spin Texture with Spin--Orbit Coupling

In the previous paragraph we have shown that there exists a correspondence
between the helical spin texture and a ferromagnetic spin texture with spin--
orbit coupling. Both exhibit topological phases and for the choice of parameters
(3.30) their topological phase diagram is identical.

The question remains, whether for a helical spin texture the presence of
spin--orbit coupling immediately spoils the topological regime. To this end we
again build upon the result from [12]. We need to rotate the spin--orbit coupling
term (3.11) with the same transformation as (3.17). This way, spin--orbit coupling
in the 𝑘𝑥-direction transforms like

∑
𝑛
(𝑓†

𝑛−1,↓𝑓𝑛,↑ −𝑓†
𝑛+1,↓𝑓𝑛,↑) + (𝑓†

𝑛,↑𝑓𝑛−1,↓ −𝑓†
𝑛,↑𝑓𝑛+1,↓)

= ∑
𝑛,𝛼,𝛽

Ω̄𝑛,𝛼,𝛽𝑔†
𝑛,𝛼𝑔𝑛+1,𝛽 + Ω̄∗

𝑛,𝛽,𝛼𝑔
†
𝑛+1,𝛼𝑔𝑛,𝛽 , (3.34)

with the matrix Ω̄𝑛

Ω̄𝑛 = [
−𝛽∗

𝑛 −𝛼̄𝑛

𝛼̄∗
𝑛 −𝛽𝑛

] , (3.35)

which elements 𝛼̄𝑛 and 𝛽𝑛 are given by

𝛼̄𝑛 = cos 𝜃𝑛
2 cos 𝜃𝑛+1

2 + sin 𝜃𝑛
2 sin 𝜃𝑛+1

2 𝑒−𝑖(𝜙𝑛+𝜙𝑛+1) , (3.36)

𝛽𝑛 = −sin 𝜃𝑛
2 cos 𝜃𝑛+1

2 𝑒𝑖𝜙𝑛 + cos 𝜃𝑛
2 sin 𝜃𝑛+1

2 𝑒−𝑖𝜙𝑛+1 . (3.37)

For a non-collinear spin texture, expressed through a static angle 𝜃 = 𝜃𝑛+1−𝜃𝑛

between adjacent sites and 𝜙𝑛 = 0 the matrix element reduce to 𝛼̄ = 𝛼 =
cos𝜃/2 and 𝛽 = 𝛽 = sin𝜃/2. After expressing the combined Hamiltonian of
(3.17) and (3.34) in the Majorana basis and transforming to 𝑘-space we find for
the Pfaffian

Pf[𝐴(𝑞)] = 𝐵2
0−[𝜇−2𝑡𝛼cos(𝑞)+2𝜆𝛽cos(𝑞)]2−[Δ0−2𝑖𝑡𝛽sin(𝑞)−2𝑖𝜆 sin(𝑞)]2

(3.38)

Here it is not straightforward to derive a simple relation between parameters
for the Majorana number. This is due to the additional spin--orbit coupling
which intercepts the topological regime of the bare spiral chain. In figure 3.5
we show topological phase diagrams for two sets of parameters.

3.4.4 Numerical Evidence

Previously, we have derived some analytical expressions for the topological
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■ Figure 3.5 Topological phase diagrams from the analytical expression (3.38). The plot on the left-
hand side shows a phase diagram for constant 𝐵 = 2, the plot on the right-hand side one for constant
𝜇 = 1. In both cases we have a crossing point of two topological regimes as a result of the interplay
between the helical magnet and spin--orbit coupling. Parameters are 𝑡 = 2, Δ = 1, and 𝜃 = 2𝜋/3.

invariant. The edge states and the corresponding densities of states are not
analytically tractable and have to be calculated numerically. This way, we can
verify the analytical predictions.

Therefore we compare the nature of the edge states, which emerge in the
topological regime for both systems. Figure 3.6 shows the local density of
states, resolved over space and energy, for the system (3.12) with 48× 1 sites
and a helical spin texture without spin--orbit coupling. As in [12], but with a
different set of parameters, we find a well-shaped edge state in conjunction with
a zero bias peak at the edge of the system. The procedure is also conducted
for a system with the same number of sites, but with ferromagnetic order of
the impurities and in presence of spin--orbit coupling in figure 3.6. The value
of the spin--orbit coupling is determined from the exact analytical matching,
determined earlier. In the case of a helical spin texture with a tilting angle of
𝜃 = 2𝜋/3 between adjacent spins the value of the spin--orbit coupling parameter
𝜆 takes the value 𝜆 = 𝑡sin(𝜃/2) = 𝑡 sin(2𝜋/6) = √3𝑡. From the two figures
we indeed recognise the perfect matching, just as predicted by our calculation.

The chief conclusion which can be drawn from these observations is, that we
have gathered further evidence, that the effects of a helical spin-texture can be
related to these of spin--orbit coupling. The visual equivalence of the two LDOS
strongly suggest that the two systems are related by a unitary transformation.

The question remains whether the topological regime of the system with
the helical spin texture is immediately spoiled by spin--orbit coupling. To this
end we evaluate our analytical expression for the topological index, which was
derived earlier. Additionally we observe the change of the energy spectrum
with increasing spin--orbit coupling. The result is shown in figure 3.8.

The figure shows the change of the energy spectrum of (3.12) for a 96×1 chain
with open boundary conditions for varying spin--orbit coupling parameter 𝜆.
The grey shaded regions are derived from (3.38). The numerical results match
the analytical predictions quite well, as we observe a zero bias state in most
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■ Figure 3.6 The left-hand side shows the spatially resolved local density of states of a system with
48×1 sites, a helical spin texture, and spin--orbit coupling 𝜆. Shown are the ground state (red) and first
excited state (green,dashed). The right-hand side shows the local density of states resolved over the
energy. Shown are the LDOS at the end of the chain (blue) and in the middle of the chain (grey,dashed).
The parameters are Δ = 1, 𝜇 = 1, 𝐵 = 2, and 𝑡 = 2. The angle between adjacent spins is chosen as
𝜃 = 2𝜋/3.
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■ Figure 3.7 The left-hand side shows the spatially resolved local density of states of a system
with 48×1 sites, a ferromagnetic spin texture, and spin--orbit coupling 𝜆. Shown are the ground
state (red) and first excited state (green,dashed). The right-hand side shows the local density of states
resolved over the energy. Shown are the LDOS at the end of the chain (blue) and in the middle of
the chain (grey,dashed). The fixed parameters are Δ = 1, 𝜇 = 1, 𝐵 = 2, and 𝑡 = 1. The value for 𝜆 is
chosen according to the exact matching of the two models derived earlier, viz. 𝜆 = sin(2𝜋/6) = √3.

parts of the grey region. The splitting towards the ends of the grey regions is a
finite-size effect and can be reduced by choosing longer chains. The 96×1 chain
offered the best trade-off between finite-size effects and computation time.

In figure 3.8 there are two topological phases. For increasing 𝜆 we start in
a topological regime where the red state is located at zero energy. After a gap
closing the band structure becomes trivial and the state associated with the
red line is shifted back into the bulk. After another gap closing, however, we
recover a second topological regime where a different state denoted by a blue
line is bound at zero energy.

That is to say, we can close the gap several times and enter and leave topolog-
ical regimes if the interaction with an external field (here spin--orbit coupling)
shifts the states. This result is particularly interesting because there exist two
“different” topological regimes in the sense, that the first part is induced by the
magnetic coupling whereas the second part is induced by spin--orbit coupling.

These two phases are indeed topologically different because if one introduces
a domain wall in the wire where one half of the wire is in the first topological
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■ Figure 3.8 The plot shows the change of the energy spectrum of (3.12) for varying spin--orbit
coupling parameter 𝜆. The grey shaded regions correspond to the analytically computed topological
index 𝑊 equal to −1. This coincides well with the spectrum, where we observe a zero-bias state in
both regions (red/blue). The fixed parameters are 𝑡 = 2, 𝜇 = 1, Δ = 1, 𝐵 = 2, and 𝜃 = 2𝜋/3.
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■ Figure 3.9 We show the local density of states for a system of two connected wires. Plotted are
the ground state (red) and first excited state (green). Both wires have different values of 𝜆 to introduce
a domain wall. On the left-hand side both values of 𝜆 are from the same topological regime. The
resulting LDOS is slightly asymmetric. On the right-hand side the two values of 𝜆 are from different
topological regimes. Clearly, there is a bound state at the domain wall which indicates that the two
topological regimes are indeed different. Parameters are 𝑡 = 2, 𝜇 = 1, Δ = 1, 𝐵 = 2, and 𝜃 = 2𝜋/3.

phase and the other half is in the second topological phase one can observe
a zero energy bound state at this domain wall, cf. figure 3.9. If they were the
same topological phase this bound state at the domain wall would not arise.
The peculiar interplay of spin--orbit coupling with the magnetic spiral leads to
this interesting phase diagram.

To top off the treatment of the one-dimensional wire we investigate the sta-
bility of the topological phase under disorder in the spin texture. As previously
for the Majorana chain we introduce

𝐵𝜇
𝑛 → {

𝐵𝜇
𝑛(1 + 𝛿(𝑥𝑛)) 𝐵𝜇 ≠ 0

𝛿(𝑥𝑛) 𝐵𝜇 = 0
where 𝜇 ∈ {𝑥,𝑦,𝑧} (3.39)

with the uniformly distributed random variable 𝛿 in the interval Ω. A dif-
ferent random number is drawn for each component 𝜇 of the classical spin.
In figure 3.10 we show the sign of the Pfaffian of the Hamiltonian matrix as a
function of the disorder strength 𝑊 where 𝛿 ∈ Ω = [−𝑊,𝑊].
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■ Figure 3.10 We show the sign of the Pfaffian as a function of the disorder strength 𝑊. The result
is averaged over 400 disorder configurations. Parameters are 96×1 sites, 𝑡 = 2, 𝜇 = 1, Δ = 1, 𝜆 = 2.3,
𝐵 = 2, 𝜃 = 2𝜋/3.

First of all we note that when increasing the disorder strength the sign of
the Pfaffian does not approach +1, i.e. the trivial phase but 0 which indicates
a balance between trivial and topological phases. We distinguish three dif-
ferent regimes in the diagram. First, the topologically stable part where the
sign of the Pfaffian is always −1. Next we have the topologically meta-stable
regime where the bulk gap is non-zero but not all disorder configurations
stabilise a topological phase any more. At the transition from the meta-stable
to the subsequent unstable part we observe a change of trends in the bulk
gap magnitude as it exhibits a turning point. This indicates that, disregarding
finite-size effects, the bulk gap had closed in between. The unstable regime is
characterised by the fact that now the disorder configuration alone is crucial
to whether a topologically stable phase can form and a balance between trivial
and topological phase is established.

3.5 Chiral States in a Shiba Lattice

In the previous text we have dealt with the pedagogical model of a one-dimen-
sional chain. Albeit experimentally successful, fabricating atomic chains is very
hard in the lab. It has been reported [13,52] that, e.g. Fe tends to form islands
on a Pb substrate for non-ideal growth conditions. Therefore we are interested
in whether topological phases can emerge in such two-dimensional patches.

3.5.1 Helical Spin Texture

As for the one-dimensional model we begin with a helical spin texture. We
stack chains like in figure 3.3 in 𝑦-direction with a shift. This texture has
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been proposed by Nakosai et al. [43] and is depicted in figure 3.11 for better
comprehension.

After imposing this spin texture we directly solve the full Hamiltonian (3.4)
meaning that we diagonalise the large real space matrix and extract eigenvalues
and eigenvectors as in section 2.1.2. To obtain a spectrum of the surface state
we impose periodic boundary conditions in 𝑥-direction and Fourier transform
the extracted eigenvectors along the 𝑥-axis. We then plot the modulus squared
of the eigenvector for the layer 𝑙 = 0 as a function of the surface momentum
versus the corresponding energy eigenvalue, cf. (2.55). The result is shown in
figure 3.12.

Because the edge modes are dispersionless bound states their winding num-
ber can only take two possible values, zero and one. A similar property has
also been observed earlier for the Kitaev chain where we found the Majorana
number as an alternative topological invariant. The Majorana number is related
to the Pfaffian of the Hamiltonian matrix which is defined according to (2.29).
This quantity can be readily calculated from the full real space Hamiltonian
and numerically efficient algorithms have been developed [53]. However, the
Hamiltonian needs to be expressed in terms of Majorana operators. We have
the advantage that our system is particle-hole symmetric and according to [4]
the BdG Hamiltonian can be written like

■ Figure 3.11 Nakosai et al. [43] proposed a helical spin texture akin to the one shown for the one-
dimensional chain, cf. figure 3.3. The tilt angle between adjacent moments was chosen as 𝜃 = 2𝜋/3.
It is evident from the picture that this texture results in a plane wave along the diagonal of lattice.
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■ Figure 3.12 Surface density of states for a heterostructure with a helical spin texture as shown
in figure 3.11. Dispersionless Majorana modes connect the nodal points. The points are scaled and
coloured according to their spectral weight. Parameters are 120×24 sites, 𝑙 = 0, 𝑡 = 2, 𝜇 = 3, Δ = 1,
𝐵 = 4, 𝜃 = 2𝜋/3.



3 magnet ic adatoms

48

Trivial

Topological

0 1 2 3 4
0

2

4

Exchange coupling 𝐵/𝑡
Ch

em
ic
al

po
te
nt

ia
l𝜇

/𝑡
■ Figure 3.13 Topological phase diagram for the system (3.4) with a helical spin texture. The blue
area is the calculated Pfaffian, the red lines indicate the analytical phase boundary. Parameters are
𝑡 = 2, Δ = 1, 𝜃𝑥 = 𝜃𝑦 = 2𝜋/3.

𝐻 = [
Ξ Δ

−Δ∗ −Ξ⊤] with Ξ = Ξ† , Δ = −Δ⊤ . (3.40)

This can be expressed in the Majorana basis (2.3) in terms of Ξ and Δ, viz.

𝐻 = 1
4[

−𝑖(𝑅− +𝑆+) −(𝑅+ −𝑆−)
(𝑅+ −𝑆−) −𝑖(𝑅− −𝑆+)

] with 𝑅± = Ξ± Ξ⊤ , 𝑆±Δ±Δ∗ .
(3.41)

Just as for the one-dimensional chain we can also apply the unitary trans-
formation (3.15). Here we have to apply the transformation twice because the
rotation may take place in both 𝑥- and 𝑦-direction. Ultimately we find

Pf[𝐴(𝑞)] = 𝐵2 − [𝜇− 2𝑡(𝛼𝑥 cos(𝑞𝑥) + 𝛼𝑦 cos(𝑞𝑦))]2

− [Δ− 2𝑖𝑡(𝛽𝑥 sin(𝑞𝑥) + 𝛽𝑦 sin(𝑞𝑦))]2 , (3.42)

where 𝛼𝑥,𝑦 = cos(𝜃𝑥,𝑦/2) and 𝛽𝑥,𝑦 = sin(𝜃𝑥,𝑦/2). To resemble a spin texture
as in figure 3.11 we have to set 𝜃𝑥 = 𝜃𝑦.

Now we can derive analytical as well as numerical expressions for the Majo-
rana number. We have plotted both in figure 3.13. Clearly, the results match
very well and the surface density of states in figure 3.12 shows gapless surface
states for a parameter set from the topological region, further supporting these
conclusions.

3.5.2 Ferromagnetic Spin Texture with Spin--Orbit Coupling

A ferromagnetic spin texture is where all classical spins are aligned in the same
direction. For the simplicity of the calculation we choose the 𝑧-direction. To
engineer topological phases we need to employ an additional Rashba-type spin--
orbit coupling. The corresponding operator was derived earlier and the full
Hamiltonian is given by (3.12). This model is diagonal in 𝑘-space and can be
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■ Figure 3.14 Topological phase diagram for the Shiba lattice in combination with strong spin--orbit
coupling. On the left we show the Chern numbers of the different phases, in the middle we show
the excitation gap as computed in the real space model, and on the right we show the excitation gap
computed analytically. The white lines are the analytically determined phase boundaries. Parameters
are 12×12 sites, 𝑡 = 2, Δ = 1, 𝜆 = 1.

readily obtained by straightforward Fourier transformation. In Nambu grading
with the spinor Ψ𝑘 = (𝑐𝑘,↑, 𝑐𝑘,↓, 𝑐†

−𝑘,↑, 𝑐
†
−𝑘,↓)⊤ one has

𝐻 = ∑
𝑘
Ψ†

𝑘[
𝜉𝑘𝜎0 + 𝐵 ⋅𝜎+ 𝑙𝑘 ⋅𝜎 Δ𝑖𝜎𝑦

Δ(𝑖𝜎𝑦)† −(𝜉𝑘𝜎0 + 𝐵 ⋅𝜎+ 𝑙𝑘 ⋅𝜎)⊤
]Ψ𝑘 , (3.43)

with 𝑙𝑘 = 𝜆(sin𝑘𝑦,− sin𝑘𝑥, 0)⊤ and 𝜉𝑘 = 2𝑡(cos𝑘𝑥 + cos𝑘𝑦) − 𝜇. The eigen-
values can be determined analytically but the resulting expressions are very
lengthy and we omit them here for the sake of brevity. However, we will use
the analytical expression later to obtain the excitation gap.

In contrast to the helical spin texture where we had found Majorana bound
states connecting the nodal points in the gap we find a fully gapped bulk and
chiral edge states for this configuration. This means that we can compute some
quantities which were not considered before, viz. the Chern number and the
expectation value of the current operator.

Depending on the chemical potential and exchange coupling we find four
distinct topological phases with Chern numbers

𝒞 = −1,0, 1, 2

respectively. These phases are separated by gapless lines in the excitation
spectrum which can be computed from the real space model (3.12) or from
the energy eigenvalues of its 𝑘-space diagonal counterpart (3.43). We show the
resulting topological phase diagram in figure 3.14. We see that the excitation
gap diagram obtained from the real space calculation is haunted by finite-size
effects for lattices as small as 12×12 sites though the gapless lines are resolved
nicely.

Now it is interesting to look at the surface states associated with the different
phases. We pick a certain parameter set and calculate the surface density of
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states (2.55). The resulting graph is plotted in figure 3.15. Obviously the bulk is
fully gapped while the edge state crosses through it.

Similar to the chiral 𝑝-wave superconductor we can compute the current
operator for (3.12). Again we only present the result for each vector component.

𝑗𝑥 = 𝑖𝑡 ∑
𝑛,𝜎

(𝑓†
𝑛,𝜎𝑓𝑛+𝑥,𝜎 −𝑓†

𝑛+𝑥,𝜎𝑓𝑛,𝜎)

+ 𝑖𝜆∑
𝑛
(𝑓†

𝑛,↓𝑓𝑛+𝑥,↑ +𝑓†
𝑛+𝑥,↓𝑓𝑛,↑ −𝑓†

𝑛+𝑥,↑𝑓𝑛,↓ −𝑓†
𝑛,↑𝑓𝑛+𝑥,↓) , (3.44)

𝑗𝑦 = 𝑖𝑡 ∑
𝑛,𝜎

(𝑓†
𝑛,𝜎𝑓𝑛+𝑦,𝜎 −𝑓†

𝑛+𝑦,𝜎𝑓𝑛,𝜎)

− 𝜆∑
𝑛
(𝑓†

𝑛,↓𝑓𝑛+𝑦,↑ +𝑓†
𝑛+𝑦,↓𝑓𝑛,↑ +𝑓†

𝑛+𝑦,↑𝑓𝑛,↓ +𝑓†
𝑛,↑𝑓𝑛+𝑦,↓) . (3.45)

To obtain a layer resolved current operator, we Fourier transform the two com-
ponents along their respective direction. That is to say, we Fourier transform 𝑗𝑥
along 𝑥 and 𝑗𝑦 along 𝑦. We adopt the indices 𝑖, 𝑗 to correspond to 𝑥,𝑦-layers.
Thus, to extract the current in a single layer, we simply look at the 𝑖-th (𝑗-th)
term of the following expression.

𝑗𝑥 = −2𝑡 ∑
𝑘𝑥,𝑗,𝜎

sin𝑘𝑥 𝑓†
𝑘𝑥,𝑗,𝜎𝑓𝑘𝑥,𝑗,𝜎

− 2𝜆 ∑
𝑘𝑥,𝑗

cos𝑘𝑥(−𝑖𝑓†
𝑘𝑥,𝑗,↓𝑓𝑘𝑥,𝑗,↑ + 𝑖𝑓†

𝑘𝑥,𝑗,↑𝑓𝑘𝑥,𝑗,↓) , (3.46)

𝑗𝑦 = −2𝑡 ∑
𝑖,𝑘𝑦,𝜎

sin𝑘𝑦 𝑓†
𝑖,𝑘𝑦,𝜎𝑓𝑖,𝑘𝑦,𝜎

− 2𝜆 ∑
𝑖,𝑘𝑦

cos𝑘𝑦(𝑓†
𝑖,𝑘𝑦,↓𝑓𝑖,𝑘𝑦,↑ +𝑓†

𝑖,𝑘𝑦,↑𝑓𝑖,𝑘𝑦,↓) . (3.47)

The current operator itself is not an interesting quantity, but its expectation
value is, because this is a measurable quantity. Therefore, to obtain the current
in a layer we compute the expectation values
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■ Figure 3.15 Surface density of states for a heterostructure with a ferromagnetic spin texture and
Rashba type spin--orbit coupling. A chiral edge state with Chern number 𝒞 = −1 crosses through the
full gap. The points are scaled and coloured according to their spectral weight. Parameters are 120×24
sites, 𝑙 = 0, 𝑡 = 1, 𝜇 = 3, Δ = 1, 𝜆 = 1, 𝐵 = 2.
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⟨𝑗𝑗𝑥(𝑘𝑥)⟩ = ∑
𝜆
⟨𝜓𝜆

𝑘𝑥,𝑗|𝑗𝑥|𝜓
𝜆
𝑘𝑥,𝑗⟩ and ⟨𝑗𝑖𝑦(𝑘𝑦)⟩ = ∑

𝜆
⟨𝜓𝜆

𝑖,𝑘𝑦
|𝑗𝑦|𝜓𝜆

𝑖,𝑘𝑦
⟩ (3.48)

where the sums run over the eigenstate number 𝜆, i.e. |𝜓𝜆⟩ is the eigenstate of
𝐻 with energy eigenvalue 𝐸𝜆.

As in section 2.2.4 we compute the expectation value of the current density
operator for the state shown in figure 3.15. In figure 3.16 we show the real space
current with vectors and the symmetrised 𝑘-space current on the surface at
𝑙 = 0. The vectors indicate a current going around the edges of the patch. The
magnitude is colour coded where red means stronger. The signal in the edge
momentum resolved current is similar to the one found for the chiral 𝑝-wave
superconductor.

Next we investigate the stability of the topological phase under disorder
in the spin texture. Akin to Kitaev’s chain we introduce the site dependent
magnetic moments

𝐵𝜇
𝑛 = {

𝐵𝜇(1 + 𝛿(𝑥𝑛)) 𝐵𝜇 ≠ 0
𝛿(𝑥𝑛) 𝐵𝜇 = 0

where 𝜇 ∈ {𝑥,𝑦,𝑧} , (3.49)

with the uniformly distributed random variable 𝛿 in the interval Ω. A dif-
ferent random number is drawn for each component 𝜇 of the classical spin. In
figure 3.17 we show the Chern number as a function of the disorder strength 𝑊
where 𝛿 ∈ Ω = [−𝑊,𝑊]. The topological phase is almost perfectly stable up
to 𝑊 = 1 which corresponds to a disorder strength of 100%.

3.5.3 Helical Spin Texture with Spin--Orbit Coupling

Just as for the one-dimensional system we carry on to a helical spin texture in
combination with strong spin--orbit coupling. Because the spin--orbit interac-
tion term does not commute with the unitary transformation (3.15) we cannot
perform an analytical treatment of this system.
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■ Figure 3.16 We show the expectation value of the current operator for a state with Chern number
𝒞 = −1. On the left-hand side we plot the current density in real space with vectors for 24×12 sites
with open boundary conditions. One can clearly see the current going around the system. On the right-
hand side we plot the symmetrised current of the layer 𝑙 = 0 for 120×24 sites with periodic boundary
conditions along the edge. Parameters are 𝑡 = 1, 𝜇 = 3, Δ = 1, 𝜆 = 1, 𝐵 = 2.
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■ Figure 3.17 We show the Chern number 𝒞 as a function of the disorder strength 𝑊 for the state
shown in figure 3.15. The result is averaged over 400 disorder configurations. Parameters are 12×12
sites, 𝑡 = 1, 𝜇 = 3, Δ = 1, 𝜆 = 1, 𝐵 = 2.
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■ Figure 3.18 Topological phase diagram for a helical spin texture in combination with strong spin--
orbit coupling. On the left we show the Chern numbers of the different phases, on the right we show
the associated excitation gap in log scale. The log scale accounts for the overall gap being quite small.
Parameters are 24×24 sites, 𝑡 = 2, Δ = 1, 𝜆 = 1, 𝜃𝑥 = 𝜃𝑦 = 2𝜋/3.

However, as presented in appendix A.1 we can compute the Chern number
from real space calculations. In figure 3.18 we show a topological phase diagram
for a system of 12×12 sites and a helical spin texture as shown in figure 3.11.
Actually, this diagram is an extension of figure 3.13 for non-zero spin--orbit
coupling 𝜆. We find many different phases with sometimes high Chern number.
Unfortunately, as for the case of a ferromagnetic texture presented in figure 3.14,
the results suffer from finite-size effects now leading to probably ill-predicted
topological phases. This is evident from changes of the Chern number without
apparent bulk gap closing. For example in the area around (𝐵/𝑡, 𝜇/𝑡) = (1, 3.5)
we observe a change from 𝒞 = 0 to 𝒞 = 2 without a gap closing at the sharp
phase boundary.

Because the overall bulk gap is very small in comparison to the superconduct-
ing gap we pick a point in a topologically non-trivial regime with large gap for
closer inspection of the associated surface state. For a state with Chern number
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■ Figure 3.19 Surface density of states for a heterostructure with a helical spin texture and strong
spin--orbit coupling. The bulk gap is very small and it is hard to interpret the surface state. The points
are scaled and coloured according to their spectral weight. Parameters are 81×81 sites, 𝑙 = [0, 9], 𝑡 = 2,
𝜇 = 3, Δ = 1, 𝜆 = 1, 𝐵 = 6, 𝜃𝑥 = 𝜃𝑦 = 2𝜋/3.
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■ Figure 3.20 We show the expectation value of the current operator for a state with Chern number
𝒞 = −1. On the left-hand side we plot the current density in real space with vectors for 60×30 sites
with open boundary conditions. On the right-hand side we plot the same current but averaged over
the 3×3 unit cell. Parameters are 𝑡 = 2, 𝜇 = 3, Δ = 1, 𝜆 = 1, 𝐵 = 6, 𝜃𝑥 = 𝜃𝑦 = 2𝜋/3.

𝒞 = −1 and associated bulk gap of 𝐸/Δ ≈ 0.1 we show the surface density of
states (SDOS) in figure 3.19. It seems as if the state breaks the time-reversal
symmetry but the full bulk gap is not clearly visible.

Next we compute the expectation value of the current operator for this state.
The result is shown in figure 3.20. Unfortunately, the arrows have seemingly
random orientations and no clear direction of the current is evident. In an
attempt to remedy this we average the current of the 3×3 unit cell but to no
avail. Now there are components in the current pointing out of the system
which is physically impossible.

We can conclude that stable topological phases probably exist in a system
with helical magnetic order and strong spin--orbit coupling. Unfortunately, the
bulk gap is small which makes it hard to determine the exact phase boundaries.
The surface states seem to have chiral character although it is questionable
whether there is a full gap present in figure 3.19. The expectation value of the
current operator does not look very promising as well.

The question remains what is the origin of these uncertainties. For the phase
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diagram in figure 3.18 we can conclude that there is are similar finite-size effects
as for the ferromagnetic texture where we observed a strong influence of finite
size in comparison with an analytical solution. One has to keep in mind that for
the helical spin texture a system of 24×24 sites corresponds to only 8×8 unit
cells. This could possibly be resolved by taking a larger lattice. However, the
computation of the Chern number is very costly and such a calculation probably
takes up several weeks, if not months.

These finite-size effects could also explain the weird behaviour of the surface
state and the current operator. Perhaps the actual bulk gap is much smaller at
the point we selected or the system is not even in a topological phase due to a
wrong prediction of the Chern number.

In any case, the problem remains unsolved.

Summary of Chapter 3

Magnetic impurities in a superconductor give rise to sub-gap bound states. The
band structure of these states can exhibit topologically non-trivial behaviour
depending on the alignment of the classical spins. This can be exploited to
engineer an effective 𝑝-wave pairing in a conventional superconductor [11–14,
36].

Among others, Nadj-Perge et al. [12] showed that a planar spiral configuration
of magnetic adatoms supports Majorana edge modes at the ends of a one-
dimensional chain. In section 3.4.1 we reproduced some of these results as
a pedagogical introduction. Based on this we show in section 3.4.2 that the
effects of the helical spin texture can be related exactly to those of spin--orbit
coupling in the host superconductor with a ferromagnetic alignment of the
impurity spins by unitary transformation. Since recent studies [49,50] suggest
that a ferromagnetic spin texture is not stable in the superconducting phase, we
study the interplay of a helical spin texture with intrinsic Rashba-type spin--orbit
coupling along the chain in section 3.4.3. We derive an analytical expression for
the topological invariant (3.38) and show that topological phases exist even for
strong spin--orbit interaction. The corresponding topological phase diagram
is shown in figure 3.5. Using real space tight-binding calculations we conclude
that two distinct topological regimes form even though they possess the same
value of the topological invariant. Even for strong spin--orbit interaction the
topological phase is robust against random static disorder in the spin texture.

One-dimensional chains of magnetic adatoms are hard to fabricate in the
lab and it has been reported [13, 52] that, e.g. Fe tends to form island on a
Pb substrate. In section 3.5.1 we study a two-dimensional helical spin texture
originally proposed in [43], visualised in figure 3.11. The surface density of states
in figure 3.12 indicates dispersionless Majorana bound states at the edges and we
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conclude that the topological invariant has ℤ2 character. Again, we can calculate
the Pfaffian analytically and construct a topological phase diagram, cf. figure 3.13,
where we compare analytical and numerical results. In section 3.5.2 we study a
ferromagnetic spin texture with spin--orbit coupling. The spin--orbit coupling
gives rise to an interesting phase diagram with several distinct topological
phases. We obtain the Chern number from tight-binding calculations using the
algorithms outlined in appendix A.1 and show it alongside the excitation gap in
figure 3.14. Non-zero winding numbers indicate a spontaneous current going
around the edges of the system. The expectation value of the current operator
is shown in figure 3.16. The topological phase is robust against random static
disorder in the ferromagnetic spin texture. Finally, in section 3.5.1 we study
the helical spin texture from figure 3.11 in conjunction with Rashba-type spin--
orbit coupling and find a rich phase diagram, cf. figure 3.18. Finite-size effects
make it hard to verify the validity of the results. The surface density of states in
figure 3.19 and the spontaneous edge current in figure 3.20 are hard to interpret.
Extended discussions can be found in the corresponding section.
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Appendix A

Algorithms

A.1 Chern Number

The Chern number can be defined for quantum states with at least two parame-
ters such as the Brillouin zone in two dimensions. Usually the Chern number is
defined as

𝒞 = 1
2𝜋𝑖 ∑

filled bands
∫
BZ

d𝑘 ℱ12(𝑘) (A.1)

where ℱ12(𝑘) is the Berry curvature which is defined in terms of the Berry
connection 𝒜𝜇(𝑘)

ℱ12(𝑘) =
∂

∂𝑘𝑥
𝒜𝑦(𝑘)−

∂
∂𝑘𝑦

𝒜𝑥(𝑘) with 𝒜𝜇(𝑘) = ⟨𝑛(𝑘)| ∂
∂𝑘𝜇

|𝑛(𝑘)⟩ (A.2)

with the normalised Bloch wave functions |𝑛(𝑘)⟩.
In numerical calculations the Hamiltonian is diagonalised at discrete points

in the Brillouin zone and the above formula becomes impractical because nu-
merical derivatives and integrals can only be evaluated with good precision for
many lattice points and high order of expansion.

Fukui et al. [54] devised an efficient algorithm to evaluate the Chern number
in a discretised Brillouin zone. The discrete momenta in the Brillouin zone are
given by 𝑘𝑛 = (𝑘𝑥

𝑛, 𝑘
𝑦
𝑛). Define the U(1) link variable from the wave functions

of the 𝑛-th band as

𝑈𝜇(𝑘𝑛) =
⟨𝑛(𝑘)|𝑛(𝑘+ 𝜇̂)⟩
|⟨𝑛(𝑘)|𝑛(𝑘+ 𝜇̂)⟩| (A.3)

where 𝜇̂ is the lattice displacement vector in 𝜇-direction. From the link variable
define the discretised Berry curvature

𝐹12(𝑘𝑛) = ln(
𝑈𝑥(𝑘𝑛)𝑈𝑦(𝑘𝑛 + 𝑥̂)
𝑈𝑥(𝑘𝑛 + 𝑦̂)𝑈𝑦(𝑘𝑛)

) such that −𝜋 < 1
𝑖 𝐹12(𝑘𝑛) ≤ 𝜋 .

(A.4)

To fulfil this condition we always have to choose the first branch of the complex
logarithm. With this the Chern number is defined as
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𝒞 = 1
2𝜋𝑖 ∑

filled bands
∑
𝑛

𝐹12(𝑘𝑛) . (A.5)

But what if we cannot diagonalise the Hamiltonian in 𝑘-space? This is the
case for an arbitrary spin texture. A real space approach to compute the Chern
number is needed. Zhang et al. [55] devised an algorithm were only a single
exact diagonalization of the Hamiltonian is needed, in contrast to [54] were the
Hamiltonian has to be diagonalised for each lattice point in 𝑘-space.

Consider a two-dimensional lattice of size 𝑁 = 𝐿𝑥 ×𝐿𝑦 and define twisted
boundary conditions such that

𝜑𝑚
𝜃 (𝑥 + 𝐿𝑥,𝑦) = 𝑒𝑖𝜃𝑥𝜑𝑚

𝜃 (𝑥,𝑦) and 𝜑𝑚
𝜃 (𝑥,𝑦+ 𝐿𝑦) = 𝑒𝑖𝜃𝑦𝜑𝑚

𝜃 (𝑥,𝑦) .
(A.6)

For twisted boundary conditions the Chern number is given by

𝒞 = 1
2𝜋𝑖 ∫𝕋𝜃

d𝜃⟨∇𝜃Ψ𝜃| × |∇𝜃Ψ𝜃⟩ (A.7)

with 𝜃 = (𝜃𝑥, 𝜃𝑦). The state Ψ𝜃 denotes the many-body wave function which is
given in terms of a Slater determinant of the single particle wave functions 𝜑𝑚

𝜃
where 𝑚 = 1,…,𝑀 denotes all the occupied states.

As a next step the single particle wave functions are Fourier transformed
and one has

𝜑𝑚
𝜃 (𝑟) = 1

√𝑁 ∑
𝑘
𝑒𝑖𝑘⋅𝑟Φ𝑚(𝑘) . (A.8)

The twisted boundary conditions are contained in 𝑘 which can be decomposed
such that 𝑘 = 𝑘0 + 𝑞 with

𝑘0 = (2𝜋𝑥
𝐿𝑥

, 2𝜋𝑦
𝐿𝑦

) and 𝑞 = (𝜃𝑥
𝐿𝑥

,
𝜃𝑦
𝐿𝑦

) . (A.9)

This is very convenient because 𝑘0 are the momenta for conventional periodic
boundary conditions. We perform a change of variables in (A.7) from 𝜃 to 𝑞.
This changes the integration domain 𝕋𝜃 → 𝑅𝑞 = [0, 2𝜋/𝐿𝑥) × [0, 2𝜋/𝐿𝑦).

𝒞 = 1
2𝜋𝑖 ∫𝑅𝑞

d𝑞⟨∇𝑞Ψ𝑞| × |∇𝑞Ψ𝑞⟩ (A.10)

which is according to Stokes’ theorem

𝒞 = 1
2𝜋𝑖 ∮∂𝑅𝑞

d𝑙𝑞⟨Ψ𝑞|∇𝑞Ψ𝑞⟩ (A.11)

where ∂𝑅𝑞 denotes the boundary around the rectangle 𝑅𝑞. This boundary is
discretised into segments 𝑞𝛼. The derivatives are replaced by discrete dif-
ferences and the integral is turned into a sum. Then the Chern number is given
by
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𝒞 = 1
2𝜋 ∑

𝛼
arg[det(𝐶𝛼,𝛼+1)] (A.12)

where arg(⋅) is the angle of a complex number and 𝐶𝛼,𝛼+1 are 𝑀×𝑀 coupling
matrices. The matrix elements are given by

𝐶𝑚𝑛
𝛼,𝛼+1 = ⟨Φ𝑚(𝑘0 + 𝑞𝛼)|Φ𝑛(𝑘0 + 𝑞𝛼+1)⟩ . (A.13)

It is also possible to compute the product of all coupling matrices 𝐶𝛼,𝛼+1 first
and then diagonalise the resulting matrix. The sum of the angle of the eigenval-
ues is again proportional to the Chern number. For sufficiently large systems,
i.e. 𝐿𝑥, 𝐿𝑦 ≫ 1 it suffices to evaluate the coupling matrices for four distinct
points 𝑞𝛼

𝑞0 = (0, 0) , 𝑞2 = (2𝜋
𝐿𝑥

, 0) , 𝑞3 = (0, 2𝜋𝐿𝑦
) , 𝑞4 = (2𝜋

𝐿𝑥
, 2𝜋𝐿𝑦

) . (A.14)

Using the inverse Fourier transformation of (A.13) we obtain the real space
expression

𝐶𝑚𝑛
𝛼,𝛼+1 = ⟨𝜑𝑚

𝜃=0|𝑒𝑖(𝑞𝛼−𝑞𝛼+1)𝑟|𝜑𝑛
𝜃=0⟩ . (A.15)

We diagonalise the product 𝐶 = 𝐶0,1𝐶1,2𝐶2,3𝐶3,0 of the coupling matrices to
obtain its eigenvalues 𝜆𝑚 and the Chern number

𝒞 = 1
2𝜋 ∑

𝑚
arg(𝜆𝑚) . (A.16)

To conclude, we test both algorithms against the chiral 𝑝-wave superconduc-
tor (2.38) using the BdG form (2.39) to apply the algorithm by Fukui et al. [54].
The results are shown alongside the analytical solution in figure A.1.

Both algorithms show very good agreement with the analytical solution,
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■ Figure A.1 We compare the two different algorithms for the computation of the Chern number on
a discrete lattice with the analytical solution of (2.42). Discontinuous points are shown as unfilled
dots. For better visibility the points were shifted off their integer values. Both methods show very
good agreement for even small lattice sizes. Parameters are 11×11 sites, 𝑡 = 1, Δ = 1.
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which is remarkable considering the small lattices used in the picture. The only
difficulties arise at the points where the bulk gap closes, i.e. 𝜇 = 0,±4𝑡. For
𝜇 = ±4𝑡 both algorithms converge to zero rather than the exact one half. At
𝜇 = 0, however, the 𝑘-space algorithm does not converge due to diverging Berry
curvature at two points in the Brillouin zone. This is not really an issue because
at these points the Chern number is not well defined anyway and the fact that
the analytical solution yields nice values is a pure coincidence.
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Summary

▶ English Summary

The main topic of this work was to investigate whether an artificial heterostruc-
ture between a conventional 𝑠-wave superconductor with strong spin--orbit
coupling and a non-collinear magnet can host topological phases.

For topological phases to emerge the gap function has to have odd parity.
This is the case for a 𝑝-wave superconductor. In chapter 2 we study two model
systems with 𝑝-wave superconductivity to gain some intuition and to introduce
tools needed later. Kitaev [9] showed that a one-dimensional chain can host
unpaired Majorana modes at its ends. Because of their non-local character these
modes are robust against disorder and are therefore promising candidates for
building blocks in a quantum storage. Kitaev’s chain can be promoted to two
dimensions, where we find helical Majorana modes which propagate around the
edges of the system. Majorana bound states at vortices in the superconductor
exhibit non-Abelian braiding statistics and could thus be used to implement
quantum gates.

Intrinsic 𝑝-wave superconductors are rare in nature. It is thus desirable to
engineer an effective 𝑝-wave pairing where electrons of the same spin are paired
together in contrast to conventional superconductors, which pair electrons of
opposite spin. To introduce 𝑝-wave pairing magnetic impurities are introduced
into the conventional superconductor. Bound states form at these impurities
and depending on the alignment of the classical impurity spins their band
structure can exhibit non-trivial topology [11–15,36].

In chapter 3 we study one- and two-dimensional systems ofmagnetic adatoms
on a conventional 𝑠-wave superconductor with and without intrinsic spin--orbit
coupling. In a one-dimensional wire we show that the effects of a helical mag-
netic order can be related exactly to those of Rashba-type spin--orbit coupling
along the wire and ferromagnetic ordering of the impurity spins. We then study
the interplay of the helical spin texture with string spin--orbit coupling and find
an interesting phase diagram. By numerical simulation we verify our analytical
results and show that the topological phase is robust against random static
disorder.

For a two-dimensional 𝑠-wave superconductor and helical spin texture there
exist Majorana bound states at the edges. The topological phase diagram for
the relevant ℤ2 invariant can be calculated analytically. Imposing ferromag-
netic order and spin--orbit coupling gives rise to a richer phase diagram with
several distinct topological phases. Their non-zero Chern number indicates
the presence of a spontaneous current around the edges which was extracted
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from numerical calculations. These phases are also robust against random
static disorder in the spin texture. The interplay of the helical spin texture and
spin--orbit coupling exhibits a rich phase diagram with sometimes high Chern
number.

▶ Deutsche Zusammenfassung

Das Hauptthema dieser Arbeit war die Frage, ob eine künstliche Heterostruktur
zwischen einem konventionellen 𝑠-Wellen-Supraleiter mit starker Spin-Bahn-
Kopplung und einem nicht kollinearen Magnet topologische Phasen besitzt.

Damit topologische Phasen auftreten können muss die Energielücke unge-
rade Parität haben. Dies ist der Fall für einen 𝑝-Wellen-Supraleiter. In Kapitel 2
studieren wir zwei Modellsysteme mit 𝑝-Wellen-Supraleitung um etwas Intuition
zu erhalten und die später benötigten Werkzeuge kennen zu lernen. Kitaev [9]
zeigte, dass eindimensionale Ketten ungepaarte Majoranamoden an den Enden
aufweisen können. Aufgrund ihres nichtlokalen Charakters sind diese Moden
robust gegenüber Unordnung und deshalb vielversprechende Kandidaten für
Bausteine in einem Quantenspeicher. Die Kitaev-Kette kann auf zwei Dimensio-
nen erweitert werden, wo wir helikale Majoranamoden finden, welche entlang
der Ränder des Systems propagieren. Gebundene Majoranazustände in den Vor-
tizes eines Supraleiters weisen nicht-Abelsche Vertauschungsstatistik auf und
sind deshalb zur Realisierung von Quantengattern geeignet.

Intrinsische 𝑝-Wellen-Supraleiter kommen in der Natur selten vor. Es ist
daher wünschenswert effektive 𝑝-Wellen-Supraleitung zu erzeugen, sodass Elek-
tronen des gleichen Spins gepaart werden, im Gegensatz zu konventionellen
Supraleitern, welche Elektronen mit verschiedenem Spin paaren. Um diese Ent-
artung aufzuheben bringt man magnetische Verunreinigungen in den konven-
tionellen Supraleiter ein. An diesen Verunreinigungen bilden sich gebundene
Zustände, deren Bandstruktur abhängig von der Ausrichtung der klassischen
Spins nicht-triviale Topologie aufzeigt [11–15,36].

In Kapitel 3 untersuchen wir ein- und zweidimensionale Systeme mit magne-
tischen Adatomen auf einem konventionellen 𝑠-Wellen-Supraleiter mit und ohne
intrinsischer Spin-Bahn-Kopplung. An einer eindimensionalen Kette zeigen wir,
dass die Auswirkungen einer helikalen magnetischen Ordnung deren von Rasba-
artiger Spin-Bahn-Kopplung und ferromagnetischer Ordnung der klassischen
Spins exakt entsprechen. Wir untersuchen außerdem das Wechselspiel der heli-
kalen Spintextur mit starker Spin-Bahn-Kopplung und finden ein interessantes
Phasendiagramm. Wir belegen unsere analytischen Resultate mit numerischen
Simulationen und zeigen, dass die topologische Phase robust gegen zufällige
statische Unordnung ist.

Bei einem zweidimensionalen 𝑠-Wellen-Supraleiter mit helikaler Spintextur
existieren gebundene Majoranazustände and den Rändern. Das topologische
Phasendiagramm der zugehörigen ℤ2-Invarianten kann analytisch berechnet
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werden. Ferromagnetische Ordnung und Spin-Bahn-Kopplung führen zu einem
vielfältigeren Phasesdiagramm mit mehreren unterschiedlichen topologischen
Phasen. Deren nichtverschwindende Chernzahl weist auf einen spontanen Strom
um den Rand herum hin, welcher numerisch berechnet wurde. Diese Phasen
sind ebenso robust gegenüber zufälliger statischer Unordnung in der Spintextur.
Das Wechselspiel der helikalen Spintextur mit Spin-Bahn-Kopplung führt zu
einem vielfältigen Phasendiagram mit manchmal hoher Chernzahl.
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