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Quantum computation promises tremendous speedups compared to classical computation for
certain tasks. Feynamn proposed that quantum computers can be used to simulate quantum system
of the same class, i.e. with similar interactions. Albeit decoherence is normally tried to be avoided it
can be used to imitate thermal effects in the system to be simulated. In this paper fundamental
principles of quantum simulation are layed out and an implementation using Rydberg atoms is
proposed. The Toric Code serves as a model Hamiltonian to show that dissipative dynamics can be
simulated using the Rydberg quantum simulator.

Simulating dynamics of physical systems on a computer
is a common way to study properties which measurement
requires a high level of sophistication or to predict a
behaviour to be reproduced by an experiment. This
process is feasible for classical systems as the degrees of
freedom increase linearly with the number of particles.
Let S be a system containing two particles p1 and p2, each
having a number of degrees of freedom denoted by f1, f2.
If these systems are coupled, even if the particles are to
interact strongly, the total number of degrees of freedom
is given by f = f1 + f2. In quantum mechanics we cannot
apply this rule, because two systems are coupled by means
of a Kronecker product, which results in an exponential
growth of the Hilbert space with the number of particles,
mathematically speaking H1 ⊂ Cm×n ⊗H2 ⊂ Cp×q →
H12 ⊂ Cmp×nq. For a 40 spin one-half system the Hilbert
space has a dimension of 240 and to calculate the unitary
time evolution one has to exponentiate a 240× 240 ≈ 1024

matrix. The total number of particles in the universe is
about 2300, i.e. if we wanted to simulate more than 300
spin one-half particles we would need a computer that is
larger than the universe.

It is strongly believed that the Fermi-Hubbard model
describes high-Tc superconductors which are valuable for
everyday life because the can transport electric current
without any losses. Developments in recent years have
pushed Tc more and more towards room temperature. It
is still a game of trial and error to find the correct mixture
of elements to obtain a high critical temperature. If one
had a better understanding of the microscopic properties
it would be much easier to engineer them for even higher
temperatures. This knowledge could be obtained through
quantum simulation. The Fermi-Hubbard model contains
only nearest neighbour interactions it is hence a perfect
candidate for quantum simulation. This paper will not
directly deal with this model but provide simpler examples
to lay the foundation for understanding the simulation of
the Fermi-Hubbard model as proposed in [3–5].

In 1982 Feynman [1] conjectured that one could use
quantum systems to simulate other quantum systems. He
noted that analogies to phenomena of field theory can be

found in solid state theory. He concluded that quantum
systems form analogy classes where each can simulate any
others dynamics, including a class that could simulate
everything. Feynman furthermore devised that using
a spin one-half system one could imitate any quantum
system described by two base states. Lloyd [2] showed,
that a quantum computer can simulate other quantum
systems efficiently as long as the interactions are local
and hence mutually commute.

In general decoherence and thermal effects are undesir-
able when doing computations with a quantum computer,
because they shadow coherent effects, and a variety of
quantum error correction algorithms have been developed
to overcome this issue. In contrast, for the simulation of
quantum systems one can exploit this property to imitate
dissipation in the simulated system.

Every operation performed on a quantum system, such
as a laser pulse, can be seen as a computational operation.
The nature of the operation determines the effect on
the system, it can either preserve coherence or introduce
dissipation. The dissipative step is later introduced in
terms of a master equation process. One can now choose
these operations such that the system follows a particular
interaction, which can then be used to realise a quantum
logic gate.

Quantum simulation is viable if the Hamiltonian can
be decomposed as follows

H =
∑̀

i=1

Hi . (1)

This is in general feasible for all Hamiltonian systems
with local interactions. Because these local interactions
mutually commute (approximately) the time evolution
can be decomposed as well

eiHt/~ ≈ eiH1t/~eiH2t/~ · · · eiH`t/~. (2)

Rydberg atoms possess a large dipole moment which
gives rise to strong Rydberg-Rydberg interactions. This
stems from the fact that the van der Waals coefficient C6



2

scales with the principal quantum number n11. When one
atom is excited to a Rydberg state another atom in the
vicinity cannot be excited to the Rydberg level at the same
time because the aforementioned strong Rydberg-Rydberg
interaction shifts the Rydberg level of the second atom
out of resonance. This phenomenon is called the Rydberg
blockade [6]. The blockade feature can be exploited to
engineer quantum gates. In contrast to standard quantum
gates, which can perform their respective operation only
on one bit at a time, the long-range Rydberg-Rydberg
interactions allow us to perform the gate operation on
many atoms within the blockade radius, i.e. we can go
massively parallel.

In the following text we’re going to engineer a meso-
scopic Rydberg CNOT gate. First of all we need to settle
what the respective terms stand for. We start off with the
CNOT gate: The CNOT gate is a two qubit gate where
one qubit takes the role of a control qubit and the other
of a target qubit. The target qubit is flipped depending
on the state of the control qubit.

Let |α, β〉 be a product of control and target qubit,
where α ∈ {0, 1} denotes the control and β ∈ {A,B} the
target qubit, then the mapping of the CNOT operation
is given by

CNOT |0, A〉 = |0, A〉 , CNOT |1, A〉 = |1, B〉 ,
CNOT |0, B〉 = |0, B〉 , CNOT |1, B〉 = |1, A〉 . (3)

Above we already defined the term mesoscopic such
that the gate will flip not only one but many target qubits.

CNOT→ CNOTN . (4)

The mapping rule needs to be modified then, as the single
state of a sole target qubit is extended to a product state
of all target qubits. Let |AN 〉 =

∏
i |A〉i, then

|0, AN 〉 → |0, AN 〉 , |1, AN 〉 → |1, BN 〉 ,
|0, BN 〉 → |0, BN 〉 , |1, BN 〉 → |1, AN 〉 .

(5)

The benefit in the realisation using Rydberg atoms is,
that the gate is actually independent of the number and
the position of the target qubits as long as they reside
within the blockade radius of the control qubit.

The CNOT gate operator is defined as a product of
control and target qubit operators [7].

U = |0〉〈0|c ⊗ 11 + |1〉〈1|c ⊗
N∏

i=1

σ(i)
x (6)

The first summand is the projection onto state |0〉c for
the control qubit and unity for the target qubit, i.e. if the
control qubit is in |0〉c nothing happens to the targets.
The second summand is the projection onto |1〉c and a
product of the σx-Pauli-matrices which perform a spin
flip of the respective target qubit. The gate operation is
unitary, so it can be reversed.
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FIG. 1. Laser pulse sequence and level scheme for a Rydberg
gate based on EIT. a) Ωr is the excitation laser of the control
atom, Ωp is the Raman laser to perform the flip of the target
atoms and Ωc is the coupling laser to the Rydberg level of the
target atoms. b) Level scheme for the scenario |0〉c. c) Level
scheme for the scenario |1〉c.

The explicit level scheme and laser pulse sequence for
such a setup is given in figure 1 as inspired by [3]. There
are two possible scenarios
Control atom in |0〉c: The π-pulse of the laser Ωr is

applied to excite the control atom from |1〉 to |r〉. This
doesn’t take place because the control atom is in |0〉. If
we have a very strong laser field Ωc � Ωp which couples
to |R〉 then the atom is on two-photon resonance from
the hyperfine ground states to the Rydberg state and the
|P 〉-level is dark. Thus the atom is transparent for the
laser field Ωp and nothing happens.
Control atom in |1〉c: Now the control atom can be

excited from |1〉 to |r〉. For the ensemble atoms we want
to make a far off-resonant Raman transition from |A〉
to |B〉. Due to the Ryd-Ryd interaction the |R〉 level is
shifted out of resonance and thus the EIT condition is
violated. Two photon resonance is no longer feasible and
the Raman transition takes place.

In the previous paragraph we exploited long-range
Rydberg-Rydberg interactions to realise a many-body
quantum gate. The question is then, can we use many-
body gates to simulate many-body dynamics?

The prime example in condensed matter physics is
the so called Toric Code. Actually the Toric Code was
intended to serve as a fault tolerant quantum memory
because information is encoded in topological properties,
such as the winding number of a torus (hence the name
“Toric Code”), but the system is also analytically solvable
and exhibits interesting physical properties such as topo-
logical phases and anyonic exciations (depending on the
boundary conditions) [4].

The Toric Code is a Hamiltonian which involves many
body interactions [3–5]. It consists of spins located on the
edges of a lattice. There are two types of local four-body
interactions, so called stabilisers.
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FIG. 2. Visualisation of a finite subset of the Toric Code
Hamiltonian. In this and all other sketches involving the Toric
Code the red squares correspond to plaquette interactions and
the blue squares to star interactions.

• Plaquette interactions Ap =
∏
i σ

(i)
x

• Star interactions Bs =
∏
j σ

(j)
z

The Hamiltonian itself is a linear superposition of these
local interactions

H = −
∑

i

A(i)
p −

∑

j

B(j)
s (7)

The model is exactly solvable and has a unique global
ground state with the properties

Ap |ψ〉 = |ψ〉 , Bs |ψ〉 = |ψ〉 . (8)

The stabilisers of the Toric Code can be violated by
flipping one of the spins taking part in the ineraction thus
changing the sign of the eigenvalue. There are two types
of exciations, viz. magnetic excitations Ap |m〉 = − |m〉
and charge excitations Bs |e〉 = − |e〉.

Before we move on to the dynamics of the excitations
we introduce the dissipative state preparation [8, 9]. Dis-
sipation is introduced by a coupling to a heat bath V (t)
with which energy can be exchanged. One can derive the
Lindblad form by assuming that the system is Marko-
vian (for more details see [8]), i.e. the system forgets its
previous states really fast. Then the time evolution of
the density matrix can be described as an exponential
multiplied with the initial density matrix.

%(t) = V (t)%(0) = eLt%(0). (9)

In the exponential one has the superoperator L which
adds the dissipation to the system. Calculating the time
derivative yields an equation similiar to the Liouville-van-
Neumann equation [8, 9].

The Lindblad Master Equation is a generalised form of
the Liouville-von-Neumann equation with an additional
term which introduces the dissipation by jump operators
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FIG. 3. Gate sequences. a) The decomposition of the whole
time step into three gates and a dissipative step. b) Decom-
position of the gate G into three processes, viz. entanglement
Uc, mapping Ug and reversed entanglement U−1

c .

ci and decay rates γi [8, 9].

d

dt
% = − i

~
[H, %] +

∑

i

γi

(
ci%c

†
i −

1

2
{c†i ci, %}

)
. (10)

Here we define a dark state to be a state for which all
coupling to the reservoir vanishes [4]

ci |D〉 = 0. (11)

The dark state is now a stationary state of the system
and the pure state |D〉 is a trivial solution to the master
equation % = |D〉〈D|.

We want to find a jump operator which dark state
is also the ground state of the whole system and which
cools itself into the ground state, i.e. applying the jump
operator on an arbitrary state a number of times should
result in the ground state.

For the Toric Code plaquette interactions one chooses
the jump operator

cp =
1

2
σ(i)
z (1−Ap). (12)

This operator is constructed in a manner cp = THEN · IF,
i.e. it exhibits conditional behaviour. If the system is
in the ground state the eigenvalue of Ap is +1, thus the
second term vanishes (the ground state is the dark state
in accordance with the definition above). If the system is
in the excited state with eigenvalues −1 of Ap, then the

second term will not vanish and the correction term σ
(i)
z

is applied to an arbitrary spin i on the plaquette. The
correction term leads to the stabiliser condition (Ap |ψ〉 =
|ψ〉 for the plaquette) to be violated and a possibly present
excitation will diffuse to the plaquette adjacent to the
alternated spin i. If two excitations meet they annihilate
each other.
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Because all the interactions are local we can focus on a
single plaquette to understand the quantum simulation.
The Hamiltonian for a single plaquette reads [4]

H = Ap = σ(1)
x σ(2)

x σ(3)
x σ(4)

x

The evolution of the system can be decomposed into a
sequence of several quantum gates (see figure 3). One
can show that the gate sequence is equivalent to the
many-body interaction Ap, i.e.

exp(−iφAp) = G−1 exp(−iφσ(c)
z )G. (13)

Let us try to gain a better understanding of the depicted
gate sequence. A coarse explanation of the sequence a)
in figure 3 would be the following, cf. Weimer et al. [4]

• G entangles the control atom and the target atoms.

• The control atom is propagated coherently with
e−iφσz . A controlled spin flip Ui(θ) is performed
onto the ensemble atom i.

• G−1 reverses the entanglement.

• Because dynamics of the system must not affect
the state of the control atom it has to be optically
pumped back into the |0〉c state which introduces
the dissipative step.

Now for the detail. The gate G can be decomposed into
three steps. First the control atom is rotated with Uc
by π/2 into a superposition state. Then the gate Ug is
performed which is given by (6), this will map the internal
state of the ensemble atoms onto the control atom, viz.
a state with eigenvalue +1 will not affect the control
atom and a state with eigenvalue −1 will flip the sign
of the |1〉c component. If then U−1c is applied to rotate
back the control atom is reversed to either |0〉c or |1〉c.
If the ensemble atoms are in a state |λ,+〉, meaning in
an arbitary state |λ〉 with eigenvalue +1 (which is the
ground state), then the control atom will be in |0〉c at
the end of G. Similarly the control atom will end up in
|1〉c for the ensemble atoms being in |λ,−〉. This means
that the gate is set up such that a flip of the control atom
takes place if they are not in the ground state.

The aforementioned flip of one of the ensemble atoms
is described by an operator Ui(θ) which functional form
reads

Ui(θ) = |0〉〈0|c ⊗ 11 + |1〉〈1|c ⊗ exp(iθσ(i)
z ). (14)

As already mentioned this operation, in combination with
the mapping operation, leaves the ground state |λ,+〉
invariant. If the system is in the excited state a flip onto

ensemble atom i is performed by exp(iθσ
(i)
z ). One can

see that the probability of the flip taking place depends
on the angle θ. If the control qubit is mapped to |1〉c it
resides there and the entanglement is not reversed by G−1.
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FIG. 4. Numerical simulation of the ground state preparation
for a Toric Code with 32 spins, taken from [5]. This result
makes clear that the fastest cooling is obtained for θ = π.

If the control atom is now optically pumped back to state
|0〉c the whole system evolves according to a Lindblad
Master equation [4]

∂t% = γ

(
ci%c

†
i −

1

2
{c†i ci, %}

)
+O(θ3). (15)

Each spin flip moves an excitation to the adjacent pla-
quette. For θ = π this move takes place with unity
probability, i.e. one obtains the fastest cooling. This is
obvious to see in figure 4, where the results for cooling a
Toric Code containing 32 spins are depicted [5].

There are a couple of take-home messages in this paper.
Feynman [1] and Lloyd [2] stressed that simulating quan-
tum mechanics on a computer is exponentially hard and
proposed the concept of quantum simulation. Weimer
[3] contrived how to simulate many-body interactions
using many-body gates based on the Rydberg blockade
effect and EIT and conjectured that Rydberg atoms are
very suitable tools for it, because the interactions are
long-ranged and thus allow for large lattice spacings with
superb single-site addressability. The implementation of
a simple spin system—the Toric Code—was shown, more
complex spin systems such as the Fermi-Hubbard model
are presented in [3–5]. The dissipative preparation of
the ground state, which is the key point of the quantum
simulation here, was sketched for a single plaquette and
results from [5] for larger systems were presented.

∗ henrimenke@gmail.com
[1] R. P. Feynman, Int. J. Theo. Phys. 21, 467 (1982).
[2] S. Lloyd, Science 273, 1073 (1996).
[3] H. Weimer, Quantum many-body physics with strongly in-

teracting Rydberg atoms, Ph.D. thesis (2010).
[4] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
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