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CHAPTER ONE

INTRODUCTION

The concept of exceptional points was first defined by Kato (1995) in 1966 in a mathemat-
ical context as part of the perturbation theory of a non-Hermitian operator with complex
eigenvalues (The physically more relevant definition of exceptional point is made by Heiss,
for a reference see Heiss (2012)). An exceptional point can appear in parameter-dependent
systems. They describe points in an at least two-dimensional parameter space at which
two (or more) eigenvalues and their corresponding eigenstates become identical. In physics
operators appear in quantum theory in the form of a Hamiltonian. Usually this Hamilto-
nian is Hermitian and has purely real eigenvalues, which are associated with a measurable
energy. This is a sufficient description of a closed quantum system. A very effective
description of open quantum systems interacting with an environment is often possible in
terms of non-Hermitian Hamiltonians. These non-Hermitian operators possess in general
complex eigenvalues. Due to their non-Hermiticity they may exhibit exceptional points.
The imaginary part of an eigenvalue is interpreted as a decay rate of the corresponding
state. An example is the hydrogen atom in crossed external electric and magnetic fields.
Various exceptional points were identified in that system by Cartarius (2008) which were
also published by Cartarius et al. (2007; 2009). This thesis deals with the temporal
evolution of states at an exceptional point in the hydrogen atom as an extension to the
works mentioned before. Uzdin et al. (2011) and Berry and Uzdin (2011) found that the
temporal evolution of resonances, when transported around an exceptional point, has to
be considered very carefully. For a closed loop around an exceptional point it is known
that the two resonances connected with the exceptional point interchange. However, if a
resonance is populated and then transported around the exceptional point, this exchange
is not always visible. In particular, it could be shown that for sufficiently slow traversals
of the parameter space loop the final population always ends up in the same state. There
are suggestions to exploit this fact for technical applications, e.g. purification schemes, cf.
Gilary, Mailybaev, et al. (2013), Atabek et al. (2011), and Gilary and Moiseyev (2012).
However, Leclerc et al. (2013) showed that also the non-adiabatic exchange is only visible
for isolated resonances. In real physical systems transitions to other resonances not
connected to the exceptional point are always possible and can influence the dynamics. It
is the purpose of this thesis to study this influence. Furthermore we investigate for the
first time the transport of a populated resonance around a third-order exceptional point.

Before the hydrogen atom is studied a matrix model proposed by Uzdin et al. (2011)
is investigated. An eigenstate is transported along a closed loop in parameter space in its
instantaneous basis. It turns out that the initial population does not need to end up in
the same state. This phenomenon is called adiabatic flip. The time evolution is solved
numerically exact. The result is compared to the adiabatic approximation.

The main topic of this thesis is the application of the insights gained from Uzdin
et al. (2011) on a physical system, viz. the hydrogen atom in crossed external electric and
magnetic fields. A numerical method for calculating the eigensystem of the Hamiltonian
was implemented by Cartarius (2008) and is extended in this thesis by means of the
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2 INTRODUCTION 1

transport of populations along a parameter space trajectory. For reference a second-order
exceptional point is encircled and the transport of resonances around it is discussed. The
main focus is set on a third-order exceptional point. The transport around this point is
observed in dependence of various parameters. The loop around the exceptional point is
traversed in both directions and a phase offset is introduced. The initial population is set
in all three resonances involved. Resonances in the vicinity of the exceptional point are
taken into respect in the temporal evolution. Based on the results by Uzdin et al. (2011)
it is discussed whether or not an adiabatic flip occurs.



CHAPTER TWO

EXCEPTIONAL POINTS

2.1. ANALYTICAL FUNCTIONS

A function f(z) : C → C is called analytic in z0 if the power series of f converges in
a vicinity of z0. An analytic function is called single valued if the value f(z0) at every
point z0 is independent of the path of the analytic continuation to reach it. In contrast, a
multiple valued (or multivalued) function can map two or more points in its range to a
single value in its domain. A simple example for the difference between those two kinds of
functions is f : z → zn with n ∈ Z for single valued and f : z → n

√
z for multiple valued

functions. To account for the ambiguity of solutions it is best to introduce the Riemann
surface. For illustration purposes we show a little example.

xEXAMPLE 2.1:

Let f : C → C with the specification f(z) = z2. We choose a value f(z) = eiϕ. Thus two
possible values for z can be obtained.

z1 = eiϕ/2

z2 = ei(ϕ/2+π)
(2.1)

Branch point singularities are points at which several branches merge together. Hence
the branches have to share a common function value (the function becomes single valued).

2.2. OCCURRENCE AND PROPERTIES

An exceptional point (abbr.: EP) is defined as a branch point singularity of a parameter-
dependent function. Let T be a matrix of arbitrary dimension of which the entries depend
on a complex parameter γ. Hence the eigenvalues of T (γ) also depend on this parameter.
Suppose that two eigenvalues which belong to two branches of the some analytic function
are degenerate for a given value of γ. Then this point is called an exceptional point.

If an exceptional point is encircled in the parameter space of γ, the eigenvalues
permute in a cyclic manner, e.g. in a two level system the two eigenvalues interchange.
The corresponding eigenvectors also permute but they pick up a geometric phase. To
get back to the two level example, the phase is expressed in terms of the sign of the
eigenvectors χi as in

[χ1,χ2]
circle→ [χ2,−χ1]. (2.2)

In the previous text we have always referred to examples consisting of two levels or
similar. This can of course be expanded to n levels and an m dimensional parameter
space.

3



4 EXCEPTIONAL POINTS 2.2

0.999 95

1

1.000 05

−5 · 10−5 0 5 · 10−5

Im
κ
[a
.u
.]

Reκ [a.u.]

(a)

−0.01

0

0.01

−0.01 0 0.01

Im
λ
[a
.u
.]

Reλ [a.u.]

(b)

κ EP E1 E2

Figure 2.1. (a): Circle in the complex parameter space given by (2.6) with r = 5 · 10−5. The
start/end point is marked with a filled bullet, the exceptional point is marked with a small
triangle. (b): Behaviour of the eigenvalues when encircling the exceptional point in the parameter
space. The eigenvalues interchange their positions. The analytical expressions for all quantities
are plotted using dashed lines.

xEXAMPLE 2.2: [From Kato (1995, p. 64).]

Here we show an analytic example of how these exceptional points are found and how
encircling them operates on the eigenvalues. Please note that this Hamiltonian is non-
Hermitian! This is a necessary condition for the existence of exceptional points. Let
κ ∈ C and

H(κ) =

(
1 κ

κ −1

)
(2.3)

with the eigenvalues

E±(κ) = ±
√
1 + κ2. (2.4)

The right hand side eigenvectors read

|ψ±(κ)⟩ =

(
−κ

1±
√
1 + κ2

)
. (2.5)

From E±(κ) one can easily see that two exceptional points exist for κ± = ±i, respectively.
In this case the eigenvectors read |ψ(±i)⟩ = (∓i, 1)⊤. If the parameter κ is circled around
one of these exceptional points, e.g. by

κ = i + r eiϕ, (2.6)

where ϕ ∈ [ 0, 2π), the eigenvalues interchange their position. This is best viewed in
figure 2.1.

Because the path of a single eigenvalue matches a semicircle it is not closed. If the
cycle in parameter space is traversed twice the eigenvalues interchange again and the loop
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is closed. For this two-level system an analytical approximation can be found. Inserting
(2.6) into (2.4) and assuming r ≪ 2 yields

Ẽ1,2 = ±
√
1 + (i + r eiϕ)2

= ±
√
r eiϕ/2

√
2i + r eiϕ

≈ ±
√
2r ei(π/4+ϕ/2).

(2.7)

These analytical solutions have been plotted in figure 2.1 using dashed lines.

2.2.1. Geometric Phases

In the previous text we have seen that the eigenvalues and eigenvectors permute if an
exceptional point is encircled. Another important consequence is the appearance of a
geometric phase. In the case of a complex symmetric matrix the geometric phase is
expressed in terms of a sign change of the eigenvectors as in

[χ1,χ2]
circle→ [χ2,−χ1]. (2.2)

Important is the behaviour for multiple circles. Repeated circles lead consequently to

[χ1,χ2]
2 circles→ [−χ1,−χ2],

[χ1,χ2]
4 circles→ [χ1,χ2].

(2.8)

Hence it only takes two loops to bring the eigenvalues to their original state, but due to
the geometric phase that accumulates while circling, the eigenvectors need four loops to
be restored.





CHAPTER THREE

ADIABATIC STATE FLIPS

GENERATED BY EXCEPTIONAL POINTS

In this chapter the reproduction of the results presented in Uzdin et al. (2011) is shown
and discussed. First of all, the model used in this publication will be introduced. Next, the
algorithms and methods needed for the reproduction are devised. The following sections
are named and structured very similar to those in the paper to maintain comparability.

3.1. FORMALISM

The model used in the following is a two-level non-Hermitian symmetric Hamiltonian H
depending on a parameter λ(t) = (λ1, λ2) where λi ∈ R. The spectrum has an exceptional
point at λ = 0.

3.1.1. Instantaneous Basis

We define the instantaneous basis |Φa,b(λ)⟩ where

H(λ) |Φa,b(λ)⟩ = Ea,b(λ) |Φa,b(λ)⟩ (3.1)

with the instantaneous energies Ea,b(λ). This representation is also called adiabatic basis
because it is, as will become clear later, the solution of the Schrödinger equation with the
non-adiabatic couplings neglected.

The spectral decomposition of a quantum mechanical state allows us to expand it
into a set of basis vectors and corresponding expansion coefficients. The ultimate goal is
to obtain a time evolution of these expansion coefficients. The time is introduced in the
parameter λ thus every quantity depending on λ also depends on time. The parameter
traverses a closed loop in parameter space. This is explained later in detail.

Because we choose the instantaneous basis, the basis vectors are time dependent,
hence the coefficients also have to depend on time. Thus we can express any state in the
form

|ψ(λ(t))⟩ = a(t) |Φa(λ(t))⟩+ b(t) |Φb(λ(t))⟩ . (3.2)

To eliminate the decay of both states due to the non-Hermeticity of H, we choose H
to have trace 0. Therefore only the relative loss and gain remain. Because we have only
two states, gain/loss of one state are proportional to loss/gain of the other state.

3.1.2. Adiabatic Approximation

The adiabatic approximation of the expansion coefficients of the solution of the Schrödinger
equation is given by

aad(t) = a(0) exp

(
− i

ℏ

∫ t

0

Ea(t
′) dt′

)
,

bad(t) = b(0) exp

(
+

i

ℏ

∫ t

0

Ea(t
′) dt′

)
,

(3.3)

7



8 ADIABATIC STATE FLIPS GENERATED BY EXCEPTIONAL POINTS 3.1.4

because Eb = −Ea. See appendix A.2 for a derivation. From here on, a will always refer
to the state with adiabatic gain, while b refers to the state with adiabatic loss.

If a(t) ≫ b(t) for 0 ≤ t ≤ T the system has performed an adiabatic flip. In accordance
with the original paper we will use the same notation for initial conditions where the
index denotes the initial set of parameters:{

a1(t), b1(t)
}

↔
{
a1(0) = 1, b1(0) = 0

}
,{

a2(t), b2(t)
}

↔
{
a2(0) = 0, b2(0) = 1

}
.

(3.4)

If the time evolution was adiabatic a(t) and b(t) would remain in their initial state for all
times and the populations would be transported around the exceptional point with no
loss. Nevertheless, non-adiabatic couplings are present and result in an exchange of the
populations.

3.1.3. Flip Error

The flip errors are defined as follows:

gain state flip error: R1 =

∣∣∣∣a1(T )b1(T )

∣∣∣∣ , (3.5)

loss state flip error: R2 =

∣∣∣∣ b2(T )a2(T )

∣∣∣∣ . (3.6)

With these quantities at hand one can also define the flip error product R1 ·R2.
Looking at the definitions of the flip errors one immediately sees that they are given

in terms of the “population of the initially occupied state divided by that of the initially
unoccupied”. Please note that the representation (3.2) is used and that the states |Φa⟩ and
|Φb⟩ interchange during the circle. Hence, in the adiabatic approximation we expect the
errors to diverge since, e.g. b1(T ) = 0 and a1(T ) ̸= 0 for a temporal evolution according
to (3.3), i.e. no flip occurred.

3.1.4. Hamiltonian

To simulate an explicit system we will need a Hamiltonian which satisfies all required
properties. Hence

H = H0 +

2∑
j=1

λj(t)Hj =

[
1 i

i −1

]
+

2∑
j=1

λj(t)Hj (3.7)

is chosen, where Hj are symmetric coupling matrices that do not commute with H0.
To perform a loop in the parameter space we need to choose appropriate parameters.

A good choice is

λ(t) =

[
λ1(t)

λ2(t)

]
=

[
α1 + β1 cos

(
2π
T t+ ϕ

)
α2 + β2 sin

(
2π
T t+ ϕ

)] , (3.8)

because we move and deform the loop by changing the parameters. To move the centre
α1,2 are used and β1,2 adjust the semiaxes of the ellipse. The angle ϕ defines the starting
point in terms of an offset angle. For the coupling matrices the Pauli matrices are chosen,
namely H1 = σx and H2 = σz. Then (3.7) is

H =

[
1 + α2 + β2 sin

(
2π
T t+ ϕ

)
i + α1 + β1 cos

(
2π
T t+ ϕ

)
i + α1 + β1 cos

(
2π
T t+ ϕ

)
−1− α2 − β2 sin

(
2π
T t+ ϕ

)] . (3.9)
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3.2. NUMERICAL CALCULATIONS

There are several methods to compute the desired quantities. To calculate the flip errors
we need to obtain the time evolution of the expansion coefficients a and b. From above
we know that an arbitrary state reads

|ψ(λ(t))⟩ = a(t) |Φa(λ(t))⟩+ b(t) |Φb(λ(t))⟩ . (3.2)

There are several different ways of getting the time evolution of the coefficients.

3.2.1. Instantaneous Basis

The time-dependent Schrödinger equation reads

iℏ∂t |ψ⟩ = H |ψ⟩ . (3.10)

Inserting the state |ψ⟩ from above yields

iℏ∂t
[
a(t) |Φa(λ(t))⟩+ b(t) |Φb(λ(t))⟩

]
= H

[
a(t) |Φa(λ(t))⟩+ b(t) |Φb(λ(t))⟩

]
. (3.11)

Now we use (3.1) to obtain

ȧ(t) |Φa⟩+ a(t)∂t |Φa⟩+ ḃ(t) |Φb⟩+ b(t)∂t |Φb⟩ = − i

ℏ
[
a(t)Ea |Φa⟩+ b(t)Eb |Φb⟩

]
. (3.12)

This can be seen as a set of two equations because multiplying with either ⟨Φa| or ⟨Φb|
and using ⟨Φa|Φa⟩ = 1 and ⟨Φa|Φb⟩ = 0, results in

ȧ(t) = − i

ℏ
a(t)Ea − a(t) ⟨Φa|∂tΦa⟩ − b(t) ⟨Φa|∂tΦb⟩ ,

ḃ(t) = − i

ℏ
b(t)Eb − a(t) ⟨Φb|∂tΦa⟩ − b(t) ⟨Φb|∂tΦb⟩ .

(3.13)

Calculation of ∂t |Φa,b⟩ There are two methods to calculate ∂t |Φa,b⟩, an analytical one
and a numerical one. The numerical method is rather easy, as we just use the differential
quotient to get an approximation for the derivative. We could have used a higher order
approximation with smaller truncation error, but the results of the first order method
were already quite similar to those produced by the analytical solution.

∂t |Φa,b(λ(t))⟩ ≈
|Φa,b(λ(t+ h))⟩ − |Φa,b(λ(t))⟩

h
+O(h). (3.14)

An analytical solution can be obtained by differentiating both sides of the Schrödinger
equation with respect to t and applying the product rule.

∂

∂t

(
H(λ(t)) |Φa,b(λ(t))⟩

)
=

∂

∂t

(
Ea,b(λ(t)) |Φa,b(λ(t))⟩

)
(∂tH) |Φa,b⟩+H∂t |Φa,b⟩ = (∂tEa,b) |Φa,b⟩+ Ea,b∂t |Φa,b⟩

This set of equation can be written in a matrix form, which reads H−

[
Ea,b 0

0 Ea,b

]
|Φa,b⟩

⟨Φa,b| 0

[∂t |Φa,b⟩
∂tEa,b

]
=

[
−(∂tH) |Φa,b⟩

0

]
. (3.15)

Solving this set of equation yields the vector (∂t |Φa,b⟩ , ∂tEa,b)
⊤, where we dismiss ∂tEa,b.
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3.2.2. Natural Basis

To avoid the calculation of derivatives for the eigenvectors we do a basis transform. We
choose |ψ⟩ to be

|ψ(λ(t))⟩ = a(t) |Φa(λ(t))⟩+ b(t) |Φb(λ(t))⟩ = c1(t) |↑⟩+ c2(t) |↓⟩ ≡

[
c1(t)

c2(t)

]
, (3.16)

where the whole time dependency is contained in ci and constant basis vectors are used.
These basis vectors, |↑⟩ and |↓⟩, are the eigenvectors of σz. The states |Φi⟩ can also be
represented by means of this basis with

|Φi(λ(t))⟩ = Φi,1(λ(t)) |↑⟩+Φi,2(λ(t)) |↓⟩ . (3.17)

Now the differential equations for the time evolution are fairly easy and read

ċ1(t) = − i

ℏ
[
H11c1(t) +H12c2(t)

]
,

ċ2(t) = − i

ℏ
[
H21c1(t) +H22c2(t)

]
,

(3.18)

where Hij are the matrix elements of H in σz-representation as given in (3.9).
The tricky thing remaining is that we want to get the time evolution of a and b, but

got the time evolution of c1 and c2. Thus we will need to map these back. This is done
by multiplying |ψ⟩ with either ⟨Φa(λ(t))| to obtain a(t) or ⟨Φb(λ(t))| to obtain b(t):

a(t) =

〈
Φa(λ(t))

∣∣∣∣∣
[
c1(t)

c2(t)

]〉
, b(t) =

〈
Φb(λ(t))

∣∣∣∣∣
[
c1(t)

c2(t)

]〉
. (3.19)

3.2.3. Interaction picture

The interaction picture helps us to solve problems of the form

iℏ∂t |ψ⟩ =
[
H0 + V (t)

]
|ψ⟩ (3.20)

by simplifying this to
iℏ∂t |ψ⟩I = VI(t) |ψ⟩I (3.21)

with

|ψ⟩I = e
i
ℏH0t |ψ⟩ ,

VI(t) = e
i
ℏH0tV (t)e−

i
ℏH0t.

(3.22)

We insert VI(t) and substitute V (t) = H − H0 where we chose, in contrast to (3.7),
H0 = σz. Also we set |ψ(t)⟩I = (d1(t), d2(t))

⊤ and obtain

∂t

[
d1

d2

]
= − i

ℏ
e

i
ℏσzt

(
H− σz

)
e−

i
ℏσzt

[
d1

d2

]
. (3.23)

One can show that this is equivalent to

∂t

[
d1

d2

]
= − i

ℏ

[
(H11 − 1)d1 +H12e

i
ℏ 2td2

H21e
− i

ℏ 2td1 + (H11 + 1)d2

]
. (3.24)
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For a more extensive calculation see appendix A.3.
As before for the natural basis we will need to map these coefficients back to a(t)

and b(t). The first step is to obtain c1(t) and c2(t) by inverting |ψ⟩I :[
c1(t)

c2(t)

]
= e−

i
ℏH0t

[
d1(t)

d2(t)

]
=

[
e−

i
ℏ td1(t)

e
i
ℏ td2(t)

]
(3.25)

This result can then be used in (3.19).

3.2.4. Initial Conditions

In the previous section we transformed to other bases. This introduces the need to
calculate the initial conditions for the new coefficients as these do not represent a(0)
and b(0). We will now take a look at the initial conditions for c1(t) and c2(t). We know
from (3.19) that

a(0) =

〈
Φa(0)

∣∣∣∣∣
[
c1(0)

c2(0)

]〉
, b(0) =

〈
Φb(0)

∣∣∣∣∣
[
c1(0)

c2(0)

]〉
. (3.26)

We need to solve this system of equations for c1(0) and c2(0). The solution reads

c1(0) =
bΦa,2 − aΦb,2

Φa,2Φb,1 − Φa,1Φb,2

∣∣∣∣
t=0

, c2(0) =
aΦb,1 − bΦa,1

Φa,2Φb,1 − Φa,1Φb,2

∣∣∣∣
t=0

, (3.27)

where Φi,j denotes the j-th component of Φi in the σz-basis.
The initial conditions d1(0) and d2(0) are the same as c1(0) and c2(0) because e

α·0 = 1
for all α ∈ C.

3.2.5. The Process

The eigenvalues and eigenvectors were calculated using the LAPACK library for FORTRAN

by Anderson et al. (1999), and a classical 4-th order Runge-Kutta integrator was used to
solve the differential equations for the expansion coefficients.

To complete one circle of cycle time Ti 1000 steps were performed. For the flip error
100 calculations were run between T = 0 and the maximum cycle time of Tmax = 20.

3.3. RESULTS

3.3.1. Parameter Sets

Calculations were run for two different sets of parameters describing two different trajec-
tories in parameter space. The first is a circular loop with the coefficients

Scircle = {α1 = 0, α2 = 0, β1 = 0.8, β2 = 0.8, ϕ = π} (3.28)

used in the circle defined by (3.8). The resulting interchange of the eigenvalues is plotted
in figure 3.1 alongside with the trajectories in parameter space.

With the second set an elliptic parameters space loop is done:

Sellipse = {α1 = 0, α2 = 0.3, β1 = 0.45, β2 = 0.9, ϕ = π} (3.29)

The same quantities as for the circle are plotted in figure 3.2.
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Figure 3.1. In (a) the behaviour of the eigenvalues when encircling the exceptional point with
the trajectory in parameter space as plotted in (b) is shown. The starting points have been
marked with a filled square. The trajectory of λ(t) has the form of a circle as described in (3.28)
— not plotted proportionally to maintain comparability to the elliptic trajectory.
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Figure 3.2. In (a) the behaviour of the eigenvalues when encircling the exceptional point with
the trajectory in parameter space as plotted in (b) is shown. The starting points have been
marked with a filled square. The trajectory of λ(t) has the form of an ellipse as described
in (3.29).

3.3.2. Time Evolution for One Cycle

Now, for both sets of parameters we do a cycle of time T = 10 in parameter space and
evaluatethe expansion coefficients. The expansion coefficients are calculated using all of
the methods described above. Except for the adiabatic approximation all of them are
equivalent and should produce the same results. The results are displayed in figure 3.3
(circle) and 3.4 (ellipse). The two expansion coefficients a(t) and b(t) are distinguished
by different colours. The various methods used are marked with different symbols. The
coefficients computed by means of the instantaneous basis are marked with solid lines,
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Figure 3.3. Time evolution of the expansion coefficients for a whole cycle of time T = 10 for
the circular trajectory (3.28) in parameter space. The two plots represent two different initial
conditions: (a) is the plot for the system initially in the gain state, hence a(0) = 1, b(0) = 0; (b)
is for an initial population in the loss state, meaning a(0) = 0, b(0) = 1. The coefficient a(t) is
plotted in red, b(t) in blue. The various symbols distinguish between the methods used. Solid
lines were calculated in the instantaneous basis, filled squares in the natural basis, filled dots by
means of the interaction picture and the empty squares are the adiabatic approximation which is
only shown in (a) since only this initial condition behaves approximately adiabatic.

those of the natural basis with filled squares, those calculated in the interaction picture
with filled dots and those of the adiabatic approximation with empty squares. The first
three methods perfectly match and all solutions reside on top of each other. For the
initial condition {a(0) = 1, b(0) = 0} the adiabatic approximation was also evaluated
which matched the curves as well.

The adiabatic approximation suggests that the initially unpopulated state remains
at zero population, but due to non-adiabatic transitions which are possible in the full
temporal evolution of the Schrödinger equation (c.f. matrix elements ⟨Φa|∂t|Φb⟩ and
⟨Φb|∂t|Φa⟩ in (3.13)) it is excited as well and gains in amplitude. The evolution shown in
figures 3.3 (a) and 3.4 (a) can still be considered to be adiabatic because the amplitude
of a(t) is about one to two orders of magnitude larger than that of b(t).

This only holds for the initial condition {a(0) = 1, b(0) = 0}. For the other condition
the result differs heavily. In this case a(t) shows the same growth behaviour as b(t) in the
first case and b(t) decays, cf. figure 3.3 (b). After some time (t ≈ 3) b(t) starts to grow.
However, it never reaches an amplitude larger than that of a(t). Still at the end of the
circle the distance between the two curves is about one order of magnitude, so in the end
we obtained a majority population of the same state as for the other initial condition.

This is an important result of the simple example. The adiabatic state flip expected
at an exceptional point is not found in the full time evolution. Instead we found that
at the end of a closed loop around an exceptional point the system ends up in the same
eigenstate!
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Figure 3.4. Time evolution of the expansion coefficients for a whole cycle of time T = 10 for
the elliptic trajectory (3.29) in parameter space. The two plots represent two different initial
conditions: (a) is the plot for the system initially in the gain state, hence a(0) = 1, b(0) = 0; (b)
is for an initial population in the loss state, meaning a(0) = 0, b(0) = 1. The coefficient a(t) is
plotted in red, b(t) in blue. The various symbols distinguish between the methods used. Solid
lines were calculated in the instantaneous basis, filled squares in the natural basis, filled dots by
means of the interaction picture and the empty squares are the adiabatic approximation.

3.3.3. Flip Error and Flip Error Product

The cycles were also done for varying cycle time Ti ∈ [0, 20] and the flip error was
computed. The flip errors for the different paths and different initial conditions can be
viewed in figures 3.5 (circle) and 3.6 (ellipse). As expected for Ti → 0 the flip error
diverges because the exceptional point is encircled so fast that only a non-adiabatic
behaviour is possible.

Since the state at the end of a circle is always the same (up to a multiplicative
prefactor independent of the initial condition) for sufficiently large cycle times the flip
error product converges to one for T → ∞.
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Figure 3.5. Flip errors and flip error product for the circular trajectory. In (a) the flip errors
are shown; we recall that R1 is the flip error for the initial condition a(0) = 1, b(0) = 0 and R2

corresponds to a(0) = 0, b(0) = 1. In (b) the flip error product R1 ·R2 is plotted.
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Figure 3.6. Flip errors and flip error product for the elliptical trajectory. In (a) the flip errors
are shown. In (b) the flip error product R1 ·R2 is plotted.





CHAPTER FOUR

EXCEPTIONAL POINTS

IN THE SPECTRA

OF THE HYDROGEN ATOM

The present chapter will deal with the basic behaviour of the hydrogen atom in crossed
external electric and magentic fields. We will discuss the structure of the Hamiltonian
and show the transition to a matrix representation given by the well known creation and
annihilation operators of the two-dimensional harmonic oscillator. This chapter follows
the discussion in Cartarius (2008, Chapter 5).

4.1. HAMILTONIAN

In static external electric and magnetic fields additional terms to the unperturbed hydrogen
atom’s Hamiltonian need to be considered. In the following text we will assume a static
and homogeneous electric field to point in x direction while a static and homogeneous
magnetic field is directed along the z direction. Therefore the expressions for those read

E = Eex , B = Bez, (4.1)

where ei denotes the cartesian unity vector in direction i.
The Hamiltonian without relativistic corrections and finite nuclear mass effects can

be written as

H =
1

2me
p2 − 1

4πε0

e2

r︸ ︷︷ ︸
(C)

+
1

2

e

me
BLz︸ ︷︷ ︸

(P)

+
1

8

e2

me
B2(x2 + y2)︸ ︷︷ ︸

(D)

+ eEx︸︷︷︸
(E)

, (4.2)

with p denoting the kinetic momentum of the electron, r the distance vector from
the origin (here nucleus) and Lz the component of the angular momentum parallel to
the external magnetic field. The Hamiltonian contains, besides the kinetic energy, the
Coulomb potential (C), a paramagnetic term (P), a diamagnetic term (D) and a potential
raised by the electric field (E).

To simplify the representation of the Hamiltonian we introduce atomic Hartree
units (cf. appendix B) such that the Hamiltonian reads

H =
1

2
p2 − 1

r
+

1

2
γLz +

1

8
γ2(x2 + y2) + fx (4.3)

with the scaled field strengths f = E/Eh
0 and γ = B/Bh

0 (cf. table B.1).
For the numerical calculations to be carried out more easily, the Hamiltonian is

transformed to dilated semiparabolic coordinates, see Cartarius (2008, Appendix B) for a
more extensive calculation. The main transformation rules are summarised here:

µ =
1

b

√
r + z , ν =

1

b

√
r − z , φ = arctan

y

x
. (4.4)
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For the sake of brevity only the transformed equation will be presented here:{
∇2

µ +∇2
ν −

(
µ2 + ν2

)
+ b4γ

(
µ2 + ν2

)
i
∂

∂φ
− 1

4
b8γ2µ2ν2

(
µ2 + ν2

)
− 2b6fµν

(
µ2 + ν2

)
cosφ+ 4b2

}
|ψ⟩ = λ

(
µ2 + ν2

)
|ψ⟩ (4.5)

with the dilated semiparabolic coordinates µ, ν, φ, and the free dilation parameter b. In
a matrix form this equation corresponds to a generalised eigenvalue problem with the
eigenvalue

λ = −(1 + 2b4E). (4.6)

To abbreviate the regularised Hamiltonian further we introduce several terms which
will help finding a matrix form. First of all the two harmonic oscillators are contracted,

∇2
µ +∇2

ν −
(
µ2 + ν2

)
=

1

µ

∂

∂µ
µ
∂

∂µ
+

1

µ2

∂2

∂φ2
+

1

ν

∂

∂ν
ν
∂

∂ν
+

1

ν2
∂2

∂φ2
−
(
µ2 + ν2

)
= −2H0. (4.7)

The analogy to the two-dimensional harmonic oscillator is obvious, hence a good choice
for the basis set is a basis of two two-dimensional harmonic oscillators with a common
angular momentum due to the appearance of the same φ in both oscillator terms,

|nµ, nν ,m⟩ = |nµ,m⟩ ⊗ |nν ,m⟩ , (4.8)

where |nµ,m⟩ and |nν ,m⟩ are eigenstates of the commuting operators

N = a†1a1 + a†2a2,

L = i(a1a
†
2 − a†1a2) = (q1p2 − q2p1)

(4.9)

of the two-dimensional harmonic oscillator. The operators are ai and a
†
i the well known

ladder operators of the one-dimensional harmonic oscillator, see Messiah (1991).
To calculate the resonances of the system a complex rotation is applied. Complex

rotation permits to calculate resonances. These appear as additional discrete eigenvalues.
They possess an imaginary part, which takes the role of a decay rate. The complete
calculation is done in Cartarius (2008, Section 3.4) and will not be presented here. In
summary the complex scaling parameter as introduced in (4.4)

b2 = |b2|eiϑ (4.10)

performs the complex rotation

r → r eiϑ. (4.11)

The complex scaled Schrödinger equation reads{
− 2H0 + |b|4ei2ϑγ

(
µ2 + ν2

)
i
∂

∂φ
− 1

4
|b|8ei4ϑγ2µ2ν2

(
µ2 + ν2

)
−2|b|6ei3ϑfµν

(
µ2 + ν2

)
cosφ+4|b|2eiϑ+

(
µ2 + ν2

)}
e−i2ϑ |ψ⟩ = 2|b|4E

(
µ2 + ν2

)
|ψ⟩ .

(4.12)
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A non-Hermitian matrix representation is obtained by evaluating the matrix elements
of the Schrödinger equation with the basis (4.8) and reads

A(γ, f) |ψ⟩ = 2|b|4EB |ψ⟩ , (4.13)

where A(γ, f) is the time-dependent complex-symmetric Hamiltonian and B is a real
symmetric positive-definite metric.

The operators mentioned above have a banded structure if written in matrix form.
Thus, both A(γ, f) and B will have a banded structure as well. The matrices were
built using up to 17 300 states resulting in a band width of approximately 1200 elements.
Resonances were then computed using the ARPACK library, cf. Lehoucq et al. (1998).

4.2. EXCEPTIONAL POINTS

The procedure of searching for exceptional points is described in detail in Cartarius (2008,
Section 5.2). The Hamiltonian derived previously depends on two parameters, viz. γ and
f . To encircle an exceptional point in the parameter space these parameters need to be
adjusted to create a looping trajectory. A good choice is a simple “circle” given by the set

γ(φ) = γ0(1 + δ cosφ),

f(φ) = f0(1 + δ sinφ)
(4.14)

with the centre (γ0, f0) of the circle and a “relative” radius δ. The time is represented by
the angle φ.

Because in this work time-dependent transport of encircling exceptional points is
investigated and a large number of them is already known we use those listed in table 4.1,
which were taken from Cartarius (2008, p. 69), but were published in Cartarius et al.
(2009) as well.

4.3. EXPANSION COEFFICIENTS

As already discussed in chapter 3 we are interested in the expansion coefficients of an
initial state with respect to a given basis during a parameter space circle. First of all
we will derive the differential equation for the coefficients in extension of the procedure
introduced in section 3.2.2. We start from the matrix respresentation of the Schrödinger
equation,

A(γ, f) |ψ⟩ = 2|b|4EB |ψ⟩ (4.15)

and insert

|ψ(t)⟩ =
∑
i

ξi(t) |ϕi⟩ (4.16)

with the eigenvectors |ϕi⟩ of the Hamiltonian at the starting point on the circle. We will
keep these basis states fixed for the whole temporal evolution. Please note that they are
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Table 4.1. List of exceptional points in the spectrum of the hydrogen atom in crossed external
electric and magentic field. The values are given in atomic units, numbers are used to reference
the exceptional points in the text.

# γ f Re(E) Im(E)

01 0.002 335 0.000 117 7 −0.017 67 −0.000 103

02 0.002 575 0.000 117 114 −0.015 067 −0.000 082 3

03 0.002 752 0.000 129 8 −0.015 714 −0.000 226 37

04 0.003 015 2 0.000 123 1 −0.012 09 −0.000 099

05 0.003 045 0.000 133 2 −0.015 812 −0.000 189 6

06 0.003 046 0 0.000 127 302 −0.017 624 −0.000 087

07 0.003 791 5 0.000 153 5 −0.012 40 −0.000 164

08 0.004 604 0.000 217 7 −0.022 135 −0.000 068 78

09 0.004 714 0.000 215 29 −0.013 94 −0.000 10

10 0.004 83 0.000 213 −0.012 55 −0.000 30

11 0.005 29 0.000 201 1 −0.0150 −0.000 136

12 0.005 37 0.000 214 −0.018 84 −0.000 067 9

13 0.005 388 0.000 261 9 −0.023 60 −0.000 15

14 0.005 72 0.000 256 −0.019 84 −0.000 258

15 0.006 11 0.000 256 −0.015 93 −0.000 24

16 0.006 15 0.000 265 −0.0158 −0.000 374

17 0.007 76 0.000 301 −0.0179 −0.000 756

not eigenstates of the Hamiltonian for other points (γ, f) on the circle. We obtain

EB |ψ⟩ = 1

2|b|4
A(γ, f) |ψ⟩ ,

iℏ∂tB |ψ⟩ = 1

2|b|4
A(γ, f) |ψ⟩ ,

∂tB |ψ⟩ = − i

ℏ
1

2|b|4
A(γ, f) |ψ⟩ ,

∂tB
∑
i

ξi(t) |ϕi⟩ = − i

ℏ
1

2|b|4
A(γ, f)

∑
i

ξi(t) |ϕi⟩ .

Now we choose ξj by multiplying with ⟨ϕj |,

∂tξj(t) = − i

ℏ
1

2|b|4
∑
i

⟨ϕj |A(γ, f)|ϕi⟩ ξi(t) . (4.17)

To obtain this formula the orthogonality of the eigenstates with regard to the matrix B
was used, i.e.

⟨ϕi|B|ϕi⟩ = 1 , ⟨ϕi|B|ϕj⟩ = δij . (4.18)



CHAPTER FIVE

STATE FLIP FOR RESONANCES

OF THE HYDROGEN ATOM

5.1. PRELIMINARIES

Before we begin to evaluate the simulations we need to make clear some facts. First of all
we investigate the decay of states. Consider the time evolution of a pure state’s density
matrix,

∂tϱ(t) = ∂t
(
|ψ(t)⟩ ⟨ψ(t)|

)
,

= |∂tψ(t)⟩ ⟨ψ(t)|+ |ψ(t)⟩ ⟨∂tψ(t)| ,

where we use the time-dependent Schrödinger equation iℏ∂t |ψ⟩ = H |ψ⟩,

= − i

ℏ
H |ψ(t)⟩ ⟨ψ(t)|+ i

ℏ
|ψ(t)⟩ ⟨ψ(t)|H†.

In case that |ψ⟩ also fulfils the stationary Schördinger equation H |ψ⟩ = E |ψ⟩ we obtain

∂tϱ(t) = − i

ℏ
E |ψ(t)⟩ ⟨ψ(t)|+ i

ℏ
|ψ(t)⟩ ⟨ψ(t)|E∗

= − i

ℏ
(E − E∗) |ψ(t)⟩ ⟨ψ(t)|

= − i

ℏ
2i ImE |ψ(t)⟩ ⟨ψ(t)|

∂tϱ(t) =
2

ℏ
ImE ϱ(t) . (5.1)

This is a first-order ordinary differential equation with the somewhat trivial solution

ϱ(t) = ϱ(t0) e
2 ImE t/ℏ. (5.2)

Because resonances have a negative imaginary part this corresponds to a decay. Obviously
one has that resonances with smaller absolute imaginary part decay slower. Because we
defined

|ψ(t)⟩ =
∑
i

ξi(t) |ϕi⟩ (5.3)

the density matrix is proportional to products of the expansion coefficients of a state |ψ⟩.
Therefore also the expansion coefficients will incorporate a decay term

ξi(t) ∼ eImEi t. (5.4)

We will keep that result in mind for a moment and carry on to the weighted coefficients.
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To illustrate the relative gain and loss we define the weighted coefficients ξ̄

ξ̄i = |ξi|2
 N∑

j=1

|ξj |2
−1

=

 N∑
j=1

|ξj |2

|ξi|2

−1

, (5.5)

where N is the total number of states taken into account. In this representation there is
a term |ξi|2/|ξi|2. Hence the decay of ξi cancels out.

We already saw the representation of a state |ψ⟩ by its spectral decomposition (5.3)
but have so far not chosen a basis. The basis vectors are chosen to be the eigenvectors of
the resonances at the beginning of a parameter space circle, i.e.

H(0) |ϕi(0)⟩ = Ei(0) |ϕi(0)⟩ . (5.6)

In accordance with Klett (2014) we will call this basis set “zero”-basis.

5.2. STATE FLIP AT AN EXCEPTIONAL POINT

In this section the behaviours of the expansion coefficients at an exceptional point are
discussed. In figure 5.1 a map of resonances at exceptional points is shown. In total three
resonances and their paths in the complex energy plane for a closed loop in the parameter
space (γ, f) are depicted. In the inset of subfigure (a) three different paths traversed are
shown. The symbols placed on the parameter space path denote the starting point and
can also be used to identify the corresponding energy map, e.g. the loop marked with a
triangle in the inset corresponds to subfigure (c) because there the starting points are
also marked with triangles. Note that all energy maps plotted in figure 5.1 apply for a
parameter set where the parameter loop is traversed in mathematically positive direction.

The exceptional points were encircled with different parameter sets. Therefore the
field strengths were modified a little and read

γ(φ) = γ0
{
1 + δ cos[χ(φ+ φ0)]

}
,

f(φ) = f0
{
1 + δ sin[χ(φ+ φ0)]

}
,

(5.7)

with γ0 and f0 being the field strengths at the centre of the circle, the relative radius δ, the
chirality χ and the offset φ0. In this section a superposition of the following parameters
will be

δ = 10−2 , χ =

{
1

−1
, φ0 =

{
0

π/4
. (5.8)

The parameters set in use is denoted in the form S = {χ, φ0}. The eigenvalues Ei,
eigenvectors |ϕi⟩ and expansion coefficients ξi are numbered. If any numerical values are
given for the coefficients the mantissa is always rounded to four decimal digits.

5.2.1. Second-order Exceptional Point

Exceptional point #15 from table 4.1 was chosen for the procedure. In figure 5.1 (b) a
map is displayed showing the two resonances interchanging their position while encircling
the exceptional point. A third resonance in the vicinity does not take part in the exchange
process. The parameter set chosen is S = {χ = 1, φ0 = 0}.

The temporal evolution of the corresponding expansion coefficients is visible in
figure 5.2 on page 24. No matter what the initial state is, the evolution always ends
with the weighted population in ξ1(t) (red). In some stages also ξ2 (green line) gains in
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Figure 5.1. Map of a structure with two exceptional points with which in total three resonances
are connected and the trajectories traversed. In the three figures the exceptional points are
encircled in different manners, in (a) both #15 and #16, in (b) #15, and in (c) #16. The inset
displays the path in parameter space. The symbols for the starting points are the same as in
corresponding energy diagram, e.g. the path with the square on it corresponds to (a) because
there also squares are used. This case is very similar to a third-order exceptional point.

amplitude while ξ3 does not really play a role. Even when the initial population is set
up in ξ3 it all passes over to the other two resonances. The fact that the same end state
for initial states is encountered may seem familiar with respect to chapter 3, where this
behaviour was already observed. We need to exercise caution here, because in chapter 3
all calculations were done in the instantaneous basis or when done in another basis at
least projected back on it. In this case the results are still in the “zero”-basis hence we
cannot associate the time evolution of the expansion coefficients with the path traversed
in the energy plane. For a more detailed discussion see Klett (2014).

5.2.2. Third-order Exceptional Point

As previously published by Cartarius et al. (2009) the exceptional points #15 and #16
form a third-order exceptional point if encircled at once. We will investigate the behaviour
of the transport of populations along a closed parameter space loop.

In figure 5.1 (a) a map of the resonances with a third-order exceptional point exchange
behaviour is shown together with the paths traversed in parameter space. The symbols
placed on the parameter paths denote the starting points. The same symbols are also
used in the energy maps to highlight the starting point. For the different parameter sets
the loop in parameter space changes slightly and so does the energy diagram. The altered
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Figure 5.2. Time evolution of the expansion coefficients for encircling a second-order exceptional
point with the centre (γ, f) = (6.11 · 10−3, 2.57 · 10−4), the relative radius δ = 10−2, a chirality
of χ = 1, and a phase offset of φ0 = 0. In the left column the unweighted coefficients are
displayed, in the right column the weighted ones. The various initial conditions are stacked up
in rows, i.e. row one is equivalent to an initial population in ξ1.
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Figure 5.3. Energy space trajectories for the different sets of parameters. In the first row one
can see that if the chirality is inverted the only effect is that the path is being traversed in
reverse. In the lower row a phase offset is introduced. This phase offset is always in the direction
of movement, i.e. the phase offset φ0 = π/4 in case of χ = 1 corresponds to a phase of −π/4
in the mathematical positive direction, cf. inset of figure 5.1 (a). The meaning of the circles is
explained later in the text.

diagram with the corresponding parameter set can be viewed in figure 5.3.

A. Chirality χ = 1, Phase φ0 = 0. The first parameter set to be discussed is
S1 = {χ = 1, φ0 = 0}, cf. figure 5.3 (a). The temporal evolution of the expansion
coefficients is plotted in figure 5.4 on page 27. The three different initial conditions are
displayed. First of all it is noted that no matter which state was prepared initially the
major part of the population left after the circle always ends up in ξ1 (red line). For the
parameter set in use the eigenvalues move according to figure 5.3 (a), i.e. the major part
of the population is in the state marked with a circle at the end of a loop. For picture
(b-1) the distribution of the relative final populations is

ξ̄1(T ) = 0.9935, ξ̄2(T ) = 0.5175 · 10−2, ξ̄3(T ) = 0.1288 · 10−2. (5.9)

The difference between the three initial populations is that the time evolution shows a
different behaviour during propagation but always ends up in the same final population
distribution. In left column—(a-1), (a-2), and (a-3)—the actual populations are plotted.
After the cycle time of 100 000 all populations are decayed below 10−18. In principle, it
would be better to use shorter times but then the effect in the relative populations would
not be visible that clearly, i.e. the final population would be in a superposition instead
of in a unique state. The temporal evolution of the population seems counterintuitive
at first, because in the energy map in figure 5.1 it seems as if E3 (blue line) is decaying
slower than the others integrated over the whole time. Obviously this statement is not
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that trivial and it is necessary to perform the explicitly time-dependent calculation. Still,
in simple cases, where the trajectory of the eigenvalues in energy space are trivial like a
semi-circle and without any crossings, then an intuitive connection can be derived from
the populations. The correspondence is discussed thoroughly for various cases by Klett
(2014).

For the case discussed above a calculation with a shorter total evolution time of
25 000 instead of 100 000 was carried out. The result is displayed in figure 5.5 on page 28.
In contrast to the evolution with cycle time 100 000 one can observe in the left column
that the decay has not progressed that far and the actual population is still conserved up
to the order of 10−6. In the right column the relative populations are plotted. We see
that the transition to a single state has not yet fully completed and at the end of the cycle
the system remains in a superposition state. Even though it looks like this superposition
state is equal for all initial conditions it is not exactly the same. The difference is little
and included in the following numerical values as a standard deviation

ξ̄1(T ) = 0.8101(160), ξ̄2(T ) = 0.0815(64), ξ̄3(T ) = 0.1083(96). (5.10)

B. Chirality χ = −1, Phase φ0 = 0. Next in line is a slightly altered parameter set
S2 = {χ = −1, φ0 = 0} in that sense that the parameter space path is traversed in the
opposite direction, cf. figure 5.3 (b). The temporal evolution is plotted in figure 5.6
on page 29. Again it can be observed that the final state is independent of the initial
population with the difference that with this parameter set the population of ξ3 (blue
line) outruns the others instead of ξ1 (red line), cf. figure 5.4 on page 27. Another aspect
is that this altered final state emerges from a different exchange behaviour along the path.
But as well as for the first parameter set the major part of the population is in the state
marked with a circle in figure 5.3 (b). We saw that for χ = 1 the population ended up
in ξ1 (red line) and for χ = −1 it ended up in ξ3 (blue line) but never in ξ2 (green line).
This is due to the fact that the end point for ξ1|χ=1 and ξ3|χ=−1 are the starting point of
ξ2 in any case and the resonances never end up in their starting point after one circle.
For reference the relative populations at the end of the cycle are given here

ξ̄1(T ) = 0.1553 · 10−2, ξ̄2(T ) = 0.5727 · 10−2, ξ̄3(T ) = 0.9927 . (5.11)

C. Chirality χ = 1, Phase φ0 = π/4. Another possible parameter set is S3 = {χ =
1, φ0 = π/4} where a phase is introduced. This phase is an offset on the circle in
the direction of movement on the circular trajectory in parameter space. An offset in
mathematical positive direction does not have that much of an impact on the positions
of the start and end points of the paths in energy space, cf. figure 5.3 (c). Hence the
distance between the point marked with a circle in figure 5.3 (a) and (b) and the new
starting point of ξ2 or the end point of ξ1 is small. Based on the previous observations we
expect the major part of the final population to remain in ξ1 (red line) which is eminently
satisfied, cf. figure 5.7 on page 30. All in all the exchange behaviour is pretty similar to
that of the previous parameter sets.

D. Chirality χ = −1, Phase φ0 = π/4. The last parameter set to be discussed is
S4 = {χ = −1, φ0 = π/4}. Now the phase rotates the start point in the other direction
and the loop is passed through in reverse. Even though the absolute value of the phase is
the same as before the results differ seriously. All end points of the paths of the eigenvalues
in figure 5.3 (d) are not even close to the points marked with a circle in figure 5.3 (a) and
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Figure 5.4. Time evolution of the expansion coefficients for encircling a third-order exceptional
point with the centre (γ, f) = (6.09 · 10−3, 2.61 · 10−4), the relative radius δ = 3.0 · 10−2, a
chirality of χ = 1, and a phase offset of φ0 = 0. The total time of the evolution is 100 000. In
the left column the unweighted coefficients are displayed, in the right column the weighted ones.
The various initial conditions are stacked up in rows, i.e. row one is equivalent to an initial
population in ξ1.



28 STATE FLIP FOR RESONANCES OF THE HYDROGEN ATOM 5.2.2

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 12 500 25 000

Time t

(a-1)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 12 500 25 000

Time t

(a-2)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 12 500 25 000

Time t

(a-3)

0

0.2

0.4

0.6

0.8

1

0 12 500 25 000

Time t

(b-1)

0

0.2

0.4

0.6

0.8

1

0 12 500 25 000

Time t

(b-2)

0

0.2

0.4

0.6

0.8

1

0 12 500 25 000

Time t

(b-3)

ξ1 ξ2 ξ3

Figure 5.5. Time evolution of the expansion coefficients for encircling a third-order exceptional
point with the centre (γ, f) = (6.09 · 10−3, 2.61 · 10−4), the relative radius δ = 3.0 · 10−2, a
chirality of χ = 1, and a phase offset of φ0 = 0. The total time of the evolution is 25 000. In the
left column the unweighted coefficients are displayed, in the right column the weighted ones. The
various initial conditions are stacked up in rows, i.e. row one is equivalent to an initial population
in ξ1.
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Figure 5.6. Time evolution of the expansion coefficients for encircling a third-order exceptional
point with the centre (γ, f) = (6.09 · 10−3, 2.61 · 10−4), the relative radius δ = 3.0 · 10−2, a
chirality of χ = −1, and a phase offset of φ0 = 0. The total time of the evolution is 100 000.
In the left column the unweighted coefficients are displayed, in the right column the weighted
ones. The various initial conditions are stacked up in rows, i.e. row one is equivalent to an initial
population in ξ1.
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Figure 5.7. Time evolution of the expansion coefficients for encircling a third-order exceptional
point with the centre (γ, f) = (6.09 · 10−3, 2.61 · 10−4), the relative radius δ = 3.0 · 10−2, a
chirality of χ = 1, and a phase offset of φ0 = π/4. The total time of the evolution is 100 000.
In the left column the unweighted coefficients are displayed, in the right column the weighted
ones. The various initial conditions are stacked up in rows, i.e. row one is equivalent to an initial
population in ξ1.
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Figure 5.8. Time evolution of the expansion coefficients for encircling a third-order exceptional
point with the centre (γ, f) = (6.09 · 10−3, 2.61 · 10−4), the relative radius δ = 3.0 · 10−2, a
chirality of χ = −1, and a phase offset of φ0 = π/4. The total time of the evolution is 100 000.
In the left column the unweighted coefficients are displayed, in the right column the weighted
ones. The various initial conditions are stacked up in rows, i.e. row one is equivalent to an initial
population in ξ1.
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(b). As plotted in figure 5.8 on page 31 the population now ends up in a superposition
state. The explicit population distribution for all initial populations is given by

ξ̄1(T ) = 0.2042 · 10−2, ξ̄2(T ) = 0.7502 , ξ̄3(T ) = 0.2477 . (5.12)

This is a good example for the serious dependence on the parameter set used. The result
can not be trivially estimated from the path traversed in energy space. It was already
mentioned that in such a nontrivial case a complete temporal evolution is necessary to
relate the energy diagram to the temporal evolution of the populations. For this state
additional calculations with shorter total evolution times of 10 000 and 25 000 instead of
100 000 were carried out. The result is displayed in figure 5.9 on page 33. As before, for
S1 = {χ = 1, φ0 = 0}, in the case of a total time of 25 000 the final states’ occupation
does not differ visually (although they do but only by probabilities of ≈ 0.02), cf. right
column in the figure. This behaviour changes for even shorter cycle times, in this case
10 000. Now the exceptional point is encircled so fast that the transition cannot even get
close to complete during one cycle. This can be seen best in subfigures (a-2) and (a-3)
where the red state dominates at the end while for longer cycle times like in subfigures
(b-2) and (b-3) clearly the green state dominates. Also the final states tremendously differ
visually.

5.3. IMPACT OF NEARBY RESONANCES

Not only these three resonances were taken into account but in further calculations also
three others in the vicinity in energy space. This was done to study the influence of the
resonances, with which those of the exceptional points will always couple in a realistic
physical system. An expanded energy map can be viewed in figure 5.10 again with the
loops in parameter space as an inset. One of the additional resonances is a (nearly) bound
state with an imaginary part of approximately 5 · 10−5, i.e. at the end of a cycle all the
population will most likely end up in that state and its weighted expansion coefficient
should converge towards 1.

5.3.1. Second-order Exceptional Point

We now evaluate the statement made before that all population should switch to the
bound state for #15. To do so, the exceptional point is encircled using the parameter set
S1 = {χ = 1, φ0 = 0}. In figure 5.11 on page 35 the resonances involved in the exchange
process of the exceptional point are drawn using solid, those not involved with dashed
lines. We find that the statement is met perfectly because ξ4(T ) = 0.9999 (purple line)
even though the initial population was never placed in ξ4 and it does not take part in
any exchange process.

5.3.2. Third-order Exceptional Point

The statement is also evaluated for the third-order exceptional point formed when #15 and
#16 are encircled together. The parameter set in use is S2 = {χ = −1, φ0 = 0}. Again
the resonances involved in the exchange process of the exceptional point are drawn using
solid, those not involved with dashed lines, cf. figure 5.12 on page 36. The conjecture
that the final population will be completely in this state still holds. We find that this
matched perfectly for a third-order exceptional point with ξ4(T ) = 0.9999 (purple line).

Another interesting result is that the speed of the dissipation to ξ5 depends on the
distance of the initially populated resonance to the bound state. The closer the initially
populated state is to the bound state in energy space the fast the dissipation, i.e. E3
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Figure 5.9. Time evolution of the expansion coefficients for encircling a third-order exceptional
point with the centre (γ, f) = (6.09 · 10−3, 2.61 · 10−4), the relative radius δ = 3.0 · 10−2, a
chirality of χ = −1, and a phase offset of φ0 = π/4. In the left column the weighted coefficients
for a total evolution time of 10 000 are displayed, in the right column for a total evolution time
of 25 000. The various initial conditions are stacked up in rows, i.e. row one is equivalent to an
initial population in ξ1.
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Figure 5.10. Map of a structure with two exceptional points with which in total three resonances
are connected and the trajectories traversed. In the three figures the exceptional points are
encircled in different manners, in (a) both #15 and #16, in (b) #15, and in (c) #16. The inset
displays the path in parameter space. The symbols for the starting points are the same as in
corresponding energy diagram, e.g. the path with the square on it corresponds to (a) because
there also squares are used. In addition to the resonances already shown in figure 5.3, three
further resonances, depicted here, were taken into account.

(blue square) is closest to E4 (purple square) in figure 5.10 (a), and hence the transition
from ξ3 to ξ4 is rapid in figure 5.12 (b-3) while the transition from E1 (red square) which
is farther away is much slower, cf. figure 5.12 (b-1). The observed behaviour is a clear
proof for the existence of non-adiabatic transitions.

This result is important because in a in realistic system always many other resonances
are in the vicinity of an exceptional point. If the adiabatic/non-adiabatic behaviour of
resonances at an exceptional point is to be studied or exploited this will not be possible if
other “disturbing” resonances are in the vicinity.

5.4. ACCURACY OF THE RESULTS

In this section we will discuss the behaviour of the scalar product when encircling an
exceptional point. This is important since it directly quantifies the expected accuracy of
the calculations done in the “zero”-basis.

For the system presented chapter 3 we used all eigenvectors of the system to calculate
the expansion coefficients. For the hydrogen atom there are unfortunately infinitely
many, hence we cannot calculate them all and take them into account when computing
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Figure 5.11. Time evolution of the expansion coefficients for encircling a second-order exceptional
point with the centre (γ, f) = (6.11 · 10−3, 2.57 · 10−4), the relative radius δ = 10−2, a chirality
of χ = 1, and a phase offset of φ0 = 0. The total time of the evolution is 100 000. In the left
column the unweighted coefficients are displayed, in the right column the weighted ones. The
various initial conditions are stacked up in rows, i.e. row one is equivalent to an initial population
in ξ1. Dashed lines indicate resonances not belonging to the exceptional point.
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Figure 5.12. Time evolution of the expansion coefficients for encircling a third-order exceptional
point with the centre (γ, f) = (6.09 · 10−3, 2.61 · 10−4), the relative radius δ = 3.0 · 10−2, a
chirality of χ = −1, and a phase offset of φ0 = 0. The total time of the evolution is 100 000.
In the left column the unweighted coefficients are displayed, in the right column the weighted
ones. The various initial conditions are stacked up in rows, i.e. row one is equivalent to an initial
population in ξ1. Dashed lines indicate resonances not belonging to the exceptional point.
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Figure 5.13. Conservation of the scalar product in the three-dimensional and six-dimensional
subspace dependent on the radius of the parameter cycle. The solid lines are calculated in the
three-dimensional basis, the dashed lines in the six-dimensional basis.

the expansion coefficients. Therefore it was proposed to fall back to an n-dimensional
subspace, where n is the number of resonances accounted for in the coefficients.

To be correctly described the resonances must not move out of the plane which they
initially, i.e. at the starting point of the parameter space loop, created. Since the vectors
|vj(0)⟩ are used as basis states in the “zero”-basis. That is, we have to check that∑

j

⟨vi(t)|vj(0)⟩2
!
= 1. (5.13)

is fulfilled for all times t. During a cycle the basis vectors may change but only if their
projection on the initial basis is preserved, otherwise our description is not correct. Please
note that we only use the square instead of the square modulus in the calculation of
the projection because we are dealing with a complex symmetric matrix, and this is
the correct inner product of the non-Hermitian system (cf. the C-product introduced in
Moiseyev (2011)).

Now we are examining this condition for the hydrogen atom. The completeness
condition (5.13) was checked for different radii and the projection of v1(t) on the initial
basis. The numerical evaluation, illustrated in figure 5.13, revealed that this condition
is met for small radii or a large basis. In case of the second-order exceptional point
the maximum deviations from 1 were 3.1085 · 10−3 for a basis of three resonances and
1.3653 · 10−3 for a basis of six resonances. This corresponds to a maximum deviation
of approximately 0.3%. For the third-order exceptional point the result is not that
unique. For a basis set of three resonances, viz. those involved in the exchange process
the maximum deviation is about 9.2295 · 10−2, i.e. approximately 9%. This is definitely
not acceptable. However, the calculation has only been done to investigate how a
third-order exceptional point behaves in principle for a solution of the time-dependent
Schrödinger equation. The quantitative results in section 5.2.2 are not out main interest.
If precise quantitative values are required , a numerically more expensive calculation
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in an instantaneous basis as explained in section 3.1.1 can be done. For a basis of six
resonances the deviation is much smaller with only 1.7897 · 10−2, which corresponds to
1.7%.

The quite huge error for the set of three resonances at the third-order exceptional
point is due to the large relative radius of δ = 3 · 10−2. In contrast this does not have a
crucial impact on the results obtained as we already discussed that it is necessary to take
nearby resonances into account because of non-adiabatic transitions to (nearly) bound
states.



CHAPTER SIX

SUMMARY

The main topic of this work was to analyse the transport of populations of resonances along
a closed cycle in the parameter space of the hydrogen atom in crossed external electric
and magnetic fields. Therefore the spectral decomposition of an arbitrary state in the
“zero”-basis was inserted in the Schrödinger equation and a differential equation for the
expansion coefficients was derived, cf. (4.17). The differential equation was solved for one
cycle around an exceptional point in a finite basis approximation, viz. a three-dimensional
and a six-dimensional subspace. To illustrate the exchange behaviour at a second-order
exceptional point the point #15 from table 4.1 was encircled. The main result was that
the final state does not depend on the initial state of the system. This demonstrates the
finding of Uzdin et al. (2011) that an adiabatic state exchange at exceptional points is
not observable. Due to non-adiabatic couplings always a population of both states at the
exceptional point will be present. For a sufficiently slow traversal of the parameter space
loop the slowest decaying state will have a predominant occupation at the end of the
circle.

As previously published by Cartarius (2008) and Cartarius et al. (2009) the points
#15 and #16 form a third-order exceptional point when encircled at once. This was
exploited to study the exchange behaviour of populations for different parameter sets. For
an isolated exceptional point, i.e. in the three-dimensional basis approximation, the same
result as for the second-order exceptional point could be detected. The final state does not
depend on the initial state for sufficiently long cycle times. Still the final state depends on
the direction in which the parameter loop is traversed as well as on a phase offset which
moves the starting point. From the energy diagram and the fact that resonances with
greater modulus of the imaginary part decay faster one could get the impression that the
final population will never end up in a state with a large imaginary part. Unfortunately
this statement is not true and the dependence on the imaginary part is of a non-trivial
nature. It is important to study the whole cycle and to add up the decay for all times.

Another question to be answered was if this exchange behaviour could be observed
in a real system. First of all it is to say that if we look at the absolute populations after
a cycle time of 100 000 we see that most of the populations have vanished and only a
fraction of the order of 10−20 is left. On the other hand if we reduce the total cycle time
under a small threshold the effect reduces or, e.g. for a cycle time of 10 000, completely
disappears. In a real system the exceptional point is not isolated but surrounded by a
vast number of other resonances and even almost bound states. To include this effect
three other resonances in the vicinity of the exceptional point were taken into account in
a six-dimensional basis approximation. One of these resonances was a (nearly) bound
state with a very low imaginary part of the order of 5 · 10−5. The result was that nearly
all of the other populations had dissipated to this bound state at the end of a cycle.

In total we found that the non-adiabatic exchange phenomenon as discussed by Uzdin
et al. (2011) and Berry and Uzdin (2011) needs some care. It will only be observable if the
two or three resonances forming an exceptional point will be sufficiently isolated. In all

39



40 SUMMARY 6

simulations discussed in this thesis at the end of a parameter space loop only the slowest
decaying resonance was populated. This effect dominates the exchange of resonances for
circles around exceptional points completely.

Future works in this direction could carry out the time-dependent calculation of the
expansion coefficients in an instantaneous basis instead of the “zero”-basis approximation.
Also it would be advantageous to study systems with better controllable time scale than
the hydrogen atom where we are dealing with times of the order of picoseconds.



APPENDIX A

AUXILLIARY MATERIAL

In this chapter you will find all calculations, which have been postponed in the previous
text.

A.1. LEFT AND RIGHT EIGENVECTORS

xLEMMA A.1:
In case of a complex symmetric matrix H = H⊤ the left eigenvectors ⟨ψ̃n| are the right
eigenvectors transposed, mathematically speaking

H = H⊤ =⇒ |ψ̃∗
n⟩ = |ψn⟩ . (A.1)

Proof: The left eigenvectors ⟨ψ̃n| and right eigenvectors |ψn⟩ satisfy the relations

⟨ψ̃n|H = ⟨ψ̃n|λ,
H |ψn⟩ = λ |ψn⟩ .

(A.2)

Transposing the first line and using (⟨ψ̃n|)⊤ = |ψ̃∗
n⟩ yields

H⊤ |ψ̃∗
n⟩ = λ |ψ̃∗

n⟩ . (A.3)

With the assumption H = H⊤ we obtain

H |ψ̃∗
n⟩ = λ |ψ̃∗

n⟩ , (A.4)

i.e.
|ψ̃∗

n⟩ = |ψn⟩ ⇐⇒ (⟨ψ̃n|)⊤ = |ψn⟩ . ■ (A.5)

A.2. ADIABATIC THEOREM

xLEMMA A.2:
The adiabatic approximation of an expansion coefficient of the solution of the time-
dependent Schrödinger equation was given earlier by

aad(t) = a(0) exp

(
− i

ℏ

∫ t

0

Ea(t
′) dt′

)
. (A.6)

Derivation: Consider the time-dependent Schrödinger equation

iℏ∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ . (A.7)
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The spectral decomposition of any state |ψ(t)⟩ reads

|ψ(t)⟩ =
∑
i

ai(t) |i(t)⟩ , where H(t) |i(t)⟩ = Ei(t) |i(t)⟩ . (A.8)

Inserting the spectral decomposition into (A.7) and applying the product rule yields∑
i

ȧi(t) |i(t)⟩+ ai(t)∂t |i(t)⟩ = − i

ℏ
∑
i

Ei(t)ai(t) |i(t)⟩ . (A.9)

Now we choose the state j by multiplying (A.9) with ⟨j(t)|:

ȧj(t) +
∑
i

ai(t) ⟨j(t)|∂t|i(t)⟩ = − i

ℏ
Ej(t)aj(t). (A.10)

The adiabatic approximation now is to neglect all terms ⟨j(t)|∂t|i(t)⟩ because for a slowly
traversed path in parameter space the basis changes only a little or not at all,

ȧj(t) = − i

ℏ
Ej(t)aj(t). (A.11)

This ordinary differential equation can be solved by separation of variables,

aj(t) = aj(t0) exp

(
− i

ℏ

∫ t

t0

Ej(t
′) dt′

)
. (A.12)

A.3. TRANSFORMATION OF THE HAMILTONIAN IN THE INTERACTION
PICTURE

xLEMMA A.3:
For arbitrary α ̸= β and τ ∈ R one has

e−iτσασβe
iτσα = σβ cos(2τ) + εαβγσγ sin(2τ), (A.13)

where we do not use Einstein’s summation convention on the left-hand side. The symbols
σα denote the Pauli matrices.

Sketch of a proof: For the proof we use the commutator relation for the Pauli matrices

[σα, σβ ] = 2iεαβγσγ , (A.14)

as well as Hadamard’s lemma

eABe−A =

∞∑
n=0

1

n!
[A,B]n (A.15)

with the n-commutator
[A,B]n = [A, [A,B]n−1]. (A.16)

Let A = −iτσα and B = σβ , such that with (A.15) one has

eABe−A =

∞∑
n=0

1

n!
[A,B]n

=

∞∑
n=0

1

n!
[−iτσα, σβ ]n

=

∞∑
n=0

1

n!
(−iτ)n[σα, σβ ]n . (A.17)
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Calculating the first few terms of the n-commutator yields∑
n

[σα, σβ ]n = σβ + [σα, σβ ]︸ ︷︷ ︸
=(A.14)

+ [σα, iεαβγσγ ]︸ ︷︷ ︸
=iεαβγ [σα, σγ ]︸ ︷︷ ︸

=2iεαβγσβ︸ ︷︷ ︸
=−2σβ

+ [σα,−σβ ]︸ ︷︷ ︸
=−2iεαβγσγ

+ . . .

Thus, (A.17) can be split up into even and odd terms

eABe−A =

∞∑
n=0

1

(2n)!
(−2iτ)2nσβ +

∞∑
n=0

1

(2n+ 1)!
(−2iτ)2n+1iεαβγσγ

=

∞∑
n=0

(−1)n

(2n)!
(2τ)2nσβ +

∞∑
n=0

(−1)n

(2n+ 1)!
(2τ)2n+1εαβγσγ

= σβ cos(2τ) + εαβγσγ sin(2τ) . ■

Now we will use this lemma to transform equation (3.23). The time-dependent part
of the Hamiltonian can be expressed using Pauli matrices:

V (t) = H− σz = (i + λ1)σx + λ2σz. (A.18)

Equation (3.23) reads

∂t

[
d1

d2

]
= − i

ℏ
e

i
ℏH0t

(
H− σz

)
e−

i
ℏH0t

[
d1

d2

]
,

= − i

ℏ
e

i
ℏH0t

(
(i + λ1)σx + λ2σz

)
e−

i
ℏH0t

[
d1

d2

]
.

With (A.13) and α = z, β = x and τ = −t/ℏ one has

= − i

ℏ

[
(i + λ1)e

i
ℏH0tσxe

− i
ℏH0t + λ2σz

] [d1
d2

]
,

= − i

ℏ

{
(i + λ1)

[
σx cos

(
− i

ℏ
2t

)
+ σy sin

(
− i

ℏ
2t

)]
+ λ2σz

}[
d1

d2

]
.

Knowing σx and σy and the relation eix = cosx+ i sinx we get

= − i

ℏ

{
(i + λ1)

[
0 e

i
ℏ 2t

e−
i
ℏ 2t 0

]
+ λ2σz

}[
d1

d2

]
.

We can identify (A.18) and rewrite this to

= − i

ℏ

[
(H11 − 1) H12e

i
ℏ 2t

H21e
− i

ℏ 2t (H11 + 1)

][
d1

d2

]
,

= − i

ℏ

[
(H11 − 1)d1 +H12e

i
ℏ 2td2

H21e
− i

ℏ 2td1 + (H11 + 1)d2

]
.





APPENDIX B

ATOMIC UNITS

Throughout this work most of the calculations are carried out in atomic Hartree units.
Atomic Hartree units are defined in terms of four arbitrary constants. As base units we
choose:

1. The electron mass me is used as mass base unit.

2. Charges are measured in units of the elementary charge e.

3. The unit of angular momentum is Planck’s constant ℏ = h/(2π).

4. Lengths are measured in units of the Bohr radius a0 = 4πε0ℏ2/(mee
2).

Always listing the set of definitions is tedious, therefore it is common practice to abbreviate
this by just writing

ℏ = a0 = me = e = 1, (B.1)

which is perfectly equivalent to the assignment

ℏ = 4πε0 = me = e = 1. (B.2)

Table B.1 contains an extensive list of atomic Hartree units with their corresponding
value in SI units.

Table B.1. Atomic Hartree units

Quantity Atomic Hartree unit Value in SI units∗

angular momentum ℏ = h/(2π) 1.054 571 726(47) · 10−34 J s

charge e 1.602 176 565(35) · 10−19 C

electric field Eh
0 = Eh/(e a0) 5.142 206 52(11) · 1011 Vm−1

energy Eh = α2mec
2 4.359 744 34(19) · 10−18 J

length a0 = 4πε0ℏ2/(mee
2) 0.529 177 210 92(17) · 10−10 m

magnetic flux density Bh
0 = ℏ/(e a20) 2.350 517 464(52) · 105 T

mass me 9.109 382 91(40) · 10−31 kg

momentum ℏ/a0 1.992 851 740(88) · 10−24 kgm s−1

time ℏ/Eh 2.418 884 326 502(12) · 10−17 s
∗Mohr et al. (2012)
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APPENDIX C

RUNGE-KUTTA METHODS

The coefficients are defined by means of ordinary differential equations

ẏ = f(t, y). (C.1)

After discretising these equations a numerical solver can be used to integrate the trajectory.
To propagate the coefficients in time a 4-th order Runge-Kutta-Method was used, as

devised by Press et al. (2007, pp. 907 sqq.).

yn+1 = yn +
1

6
h (k1 + 2k2 + 2k3 + k4) +O(h5)

tn+1 = tn + h
(C.2)

where

k1 = f (tn, yn) , (C.3a)

k2 = f

(
tn +

1

2
h, yn +

h

2
k1

)
, (C.3b)

k3 = f

(
tn +

1

2
h, yn +

h

2
k2

)
, (C.3c)

k4 = f (tn + h, yn + hk3) . (C.3d)

This set of equations is also called classical Runge-Kutta. For application in the
present case there is still a downside. The step size h needs to be chosen wisely to ensure
short runtime by making as few steps as possible as well as good convergence at any point
of the trajectory to maintain accuracy over long integration times.
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ZUSAMMENFASSUNG

Das Hauptthema dieser Arbeit war die Analyse des Populationstransports von Reso-
nanzen entlang einer geschlossenen Bahn im Parameterraum für das Wasserstoffatom in
gekreuzten externen elektrischen und magnetischen Feldern. Dafür wurde die Spektralzer-
legung für einen festen Parametersatz (“zero”-Basis) eines allgemeinen Zustandes in die
Schrödingergleichung eingesetzt und eine Differentialgleichung für die Entwicklungskoef-
fizienten abgeleitet, vgl. (4.17). Diese Differentialgleichung wurde für eine Umrundung
des exzeptionellen Punktes in der Näherung einer endlichen Basis gelöst, hier ein drei-
dimensionaler und ein sechs-dimensionaler Unterraum. Um das Vertauschungsverhalten
an einem exzeptionellen Punkt zweiter Ordnung darzustellen, wurde der Punkt #15 aus
Tabelle 4.1 umrundet. Das wesentliche Ergebnis war, dass der Endzustand nicht vom
Anfangszustand des Systems abhängt. Dies demonstriert die Erkenntnisse von Uzdin et al.
(2011), dass eine adiabatische Zustandsvertauschung an einem exzeptionellen Punkt nicht
beobachtbar ist. Auf Grund nichtadiabatischer Kopplungen bleibt die Population stets
in beiden Zuständen des exzeptionellen Punktes. Für ausreichend langsame Durchläufe
der Parameterbahn wird am Ende des Kreises immer der am langsamsten zerfallende
Zustand die größte Besetzung haben.

Wie bereits von Cartarius (2008) und Cartarius et al. (2009) publiziert, bilden die
Punkte #15 und #16 einen exzeptionellen Punkt dritter Ordnung, wenn sie gemeinsam um-
rundet werden. Dies wurde ausgenutzt, um das Vertauschungsverhalten von Populationen
mit verschiedenen Parametersätzen zu untersuchen. Für einen isolierten exzeptionellen
Punkt, d.h. in der drei-dimensionalen Näherung, konnte das gleiche Ergebnis wie für
den exzeptionellen Punkt zweiter Ordnung gefunden werden. Der Endzustand hängt für
ausreichend lange Umrundungszeiten nicht vom Anfangszustand ab. Dennoch hängt der
Endzustand sowohl von der Richtung, in die der Parameterkreis durchlaufen wird, als auch
von einer Phasenverschiebung, die den Startpunkt ändert, ab. Aus dem Energiediagramm
und aus der Tatsache, dass Resonanzen mit größerem Betrag des Imaginärteils schneller
zerfallen, könnte man den Eindruck gewinnen, dass sich die Endpopulation nie in einem
Zustand mit größerem Imaginärteil befinden wird. Unglücklicherweise ist diese Aussage
falsch und die Abhängigkeit vom Imaginärteil nicht trivial. Es ist wichtig, den gesamten
Durchlauf zu betrachten und den Zerfalle aufzusummieren.

Eine andere Frage, die es zu beantworten galt, war, ob dieses Vertauschungsverhalten
in einem realen System beobachtet werden kann. Zunächst ist zu bemerken, dass wenn wir
die absolute Populationen nach einem Durchlauf der Zeit 100 000 betrachten, wir sehen,
dass der Großteil der Populationen zerfallen ist und nur ein Bruchteil der Größenordnung
10−20 verblieben ist. Wenn wir jedoch die gesamte Umrundungszeit unter eine gewisse
Grenze senken, wird der Effekt reduziert oder verschwindet, z.B. für eine Umrundungszeit
von 10 000, komplett. In einem realen System ist der exzeptionelle Punkt nicht isoliert,
sondern von einer großen Anzahl an anderen Resonanzen und sogar fast gebundenen
Zuständen umgeben. Um diesen Effekt miteinzubeziehen, wurden drei weitere Reso-
nanzen in der Nähe des exzeptionellen Punktes in einer sechs-dimensionalen Näherung
berücksichtigt. Eine dieser Resonanzen war ein (nahezu) gebundener Zustand mit einem
verschwindend geringen Imaginärteil der Größenordnung 5 · 10−5. Das Ergebnis war, dass
zum Ende des Kreises nahezu alle anderen Populationen in diesen gebundenen Zustand
übergangen waren.
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Zusammenfassend wurde herausgefunden, dass die nichtadiabatischer Zustandsver-
tauschung wie bei Uzdin et al. (2011) und Berry und Uzdin (2011) mit Vorsicht zu
betrachten ist. Sie wird nur beobachtbar sein, wenn die zwei oder drei Resonanzen, die
einen exzeptionellen Punkt bilden, ausreichend isoliert sind. In allen Simulationen, die in
dieser Arbeit diskutiert wurden, war am Ende der Parameterbahn nur die am langsamsten
zerfallende Resonanz besetzt. Die Effekt überwiegt den Austausch von Resonanzen für
Kreise um einen exzeptionellen Punkt bei weitem.

Zukünftige Arbeiten auf diesem Gebiet könnten die zeitabhängige Rechnung der
Entwicklungskoeffizienten in einer instantanen Basis statt der “zero”-Basis-Näherung
durchführen. Außerdem wäre es von Vorteil, ein System zu untersuchen, dessen Zeitskala
besser kontrollierbar ist als die des Wasserstoffatoms, bei der wir uns auf einer Zeitskala
von Picosekunden bewegen.
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dass ich keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder
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